4 research outputs found

    Natural disasters in the history of the eastern Turk empire

    Full text link
    This article analyzes the effect of climate extremes on the historical processes that took place (AD 536, 581, 601, 626 and 679) in the Eastern Turk Empire (AD 534–745) in Inner Asia. Climate extremes are sharp, strong and sometimes protracted periods of cooling and drought caused by volcanic eruptions that in this case resulted in a negative effect on the economy of a nomadic society and were often accompanied by famine and illness. In fact, many of these natural catastrophes coincided with the Black Death pandemics among the Eastern Turks and the Chinese living in the north of China. The Turk Empire can be split into several chronological periods during which significant events that led to changes in the course of history of the nomadic state took place: AD 534–545—the rise of the Turk Empire; AD 581–583—the division of the Turk Empire into theWestern and the Eastern Empires; AD 601–603—the rise of Qimin Qaghan; AD 627–630—the Eastern Turks are conquered by China; AD 679–687—the second rise of the Eastern Turk Empire. The research shows that there is clearly-discernable interplay between important historical events and climate extremes in the history of the Turk Empire. This interplay has led us to the conclusion that the climatic factor did have an impact on the historical processes that took place in the eastern part of Inner Asia, especially on the territories with a nomadic economy. © The Author(s) 2019

    Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone

    Get PDF
    Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 48C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by �40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases

    Long-term forest composition and its drivers in taiga forests in NW Russia

    No full text
    Understanding the processes behind long-term boreal forest dynamics can provide information that assists in predicting future boreal vegetation under changing environmental conditions. Here, we examine Holocene stand-scale vegetation dynamics and its drivers at the western boundary of the Russian taiga forest in NW Russia. Fossil pollen and conifer stomata records from four small hollow sites and two lake sites are used to reconstruct local vegetation dynamics during the Holocene. Variation partitioning is used to assess the relative importance of the potential drivers (temperature, forest fires and growing site wetness) to the long-term stand-scale dynamics in taiga forest. All the main tree taxa, including the boreal keystone species Picea abies (Norway spruce) and Larix sibirica (Siberian larch), have been locally present since 10,000 cal yr BP. The constant Holocene presence of L. sibirica at three small hollow sites suggests a fast postglacial immigration of the species in northern Europe. Picea was present but not dominant at all study sites until its expansion between 8,000 and 7,000 cal yr BP markedly changed the forest structure through the suppression of Betula (birch), Pinus (pine) and Larix. Our results demonstrate that in general, the Holocene forest dynamics in our study region have been driven by temperature, but during short intervals the role of local factors, especially forest fires, has been prominent. The comparison between sites reveals the importance of local factors in stand-scale dynamics in taiga forests. Therefore, the future responses of taiga forest to climate change will be predominantly modulated by the local characteristics at the site
    corecore