1,368 research outputs found
School Flexible Learning Spaces, Student Movement Behavior and Educational Outcomes among Adolescents: A Mixed-Methods Systematic Review
BACKGROUND:
To achieve sustainability, we must consider scalable improvements in student movement behavior in the classroom setting, educational priorities. Flexible learning spaces that employ student‐centered pedagogy and contain a range of furniture and layout options, implemented to improve educational outcomes, may enable unintended health benefits. In this review, we summarize the evidence on the effects of flexible learning spaces on adolescent student movement behaviors and educational outcomes.
METHODS:
We searched 5 databases, retrieving 5 quantitative and one qualitative article meeting the review criteria.
RESULTS:
Students in flexible learning spaces spent less time sitting, and more time standing and moving. Students were also more engaged, on‐task, and collaborated and interacted more. Academic results for English, Mathematics and Humanities for those in flexible learning spaces were higher than peers in traditional classrooms.
CONCLUSION:
Evidence from the reviewed studies suggests that there may be beneficial outcomes across some movement behaviors as well as learning outcomes in classrooms that employ student‐centered pedagogy and use a built environment that facilitates autonomy and choice around where and how to learn. These learning environments present an opportunity for an interdisciplinary approach to address sedentary behavior in classrooms
Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1
Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER+ breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context
Understanding large plastic deformation of SiC nanowires at room temperature
Tensile behaviors of SiC [111] nanowires with various possible microstructures have been investigated by molecular-dynamics simulations. The results show that the large plastic deformation in these nanowires is induced by the anti-parallel sliding of 3C grains along an ultra- thin intergranular amorphous film parallel to the (11¯1) plane and inclined at an angle of 19.47◦ with respect to the nanowire axis. The resulting large plastic deformation of SiC nanowires at room temperature is attributed to the stretching, breaking and re-forming of Si–C bonds in the intergranular amorphous film, which is also evident from the sawtooth jumps in the stress-strain response
A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation
The female perspective of personality in a wild songbird: repeatable aggressiveness relates to exploration behaviour
ABSTRACT: Males often express traits that improve competitive ability, such as aggressiveness. Females also express such traits but our understanding about why is limited. Intraspecific aggression between females might be used to gain access to reproductive resources but simultaneously incurs costs in terms of energy and time available for reproductive activities, resulting in a trade-off. Although consistent individual differences in female behaviour (i.e. personality) like aggressiveness are likely to influence these reproductive trade-offs, little is known about the consistency of aggressiveness in females. To quantify aggression we presented a female decoy to free-living female great tits (Parus major) during the egg-laying period, and assessed whether they were consistent in their response towards this decoy. Moreover, we assessed whether female aggression related to consistent individual differences in exploration behaviour in a novel environment. We found that females consistently differed in aggressiveness, although first-year females were on average more aggressive than older females.
Moreover, conform life history theory predictions, ‘fast’ exploring females were more aggressive towards the decoy than ‘slow’ exploring females. Given that personality traits are often heritable, and correlations between behaviours can constrain short term adaptive evolution, our findings highlight the importance of studying female aggression within a multivariate behavioural framework
Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense
Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the''Guard-Hypothesis,'' R proteins (the ``guards'') can sense modification of target molecules in the host (the ``guardees'') by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the ``guardee-effector'' interface for pathogen recognition, natural selection acts on the ``guard-guardee'' interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen
Contour identical implants to bridge mandibular continuity defects - individually generated by LaserCUSING® - A feasibility study in animal cadavers
Background
Ablative tumor surgery often results in continuity defects of the mandible. When an immediate reconstruction using autologous bone grafts is not possible the bridging of the defects with a variety of bridging plates might be achieved. However, those bridging plates have the risk of plate fractures or exposure. Customized titanium implants manufactured using CAD/CAM and the LaserCUSING® technique might be an alternative.
Methods
In the present study, computed tomographies (CT) of porcine cadaver mandibles were generated and transferred into DICOM data. Following, different continuity defects were surgically created in the mandibles. Based on the DICOM data customized titanium implants were manufactured using CAD/CAM procedures and the LaserCUSING® technique. The implants were fixed to the remaining stumps with screws. Subsequently, the accuracy of the reconstructed mandibles was tested using plaster casts.
Results
The workflow from the CT to the application of the customized implants was proved to be practicable. Furthermore, a stable fixation of the customized implant to the remaining stumps could be achieved. The control of the accuracy showed no frictions or obstacles.
Conclusion
The customized titanium implant seems to be a promising approach to bridge continuity defects of the mandible whenever an immediate reconstruction with autologous bone is not possible
Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders
Background Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes belong to gene families. The use of gene family information for disease gene discovery and variant interpretation has not yet been investigated on a genome-wide scale. We empirically evaluate whether paralog-conserved or non-conserved sites in human gene families are important in NDDs. Methods Gene family information was collected from Ensembl. Paralog-conserved sites were defined based on paralog sequence alignments; 10,068 NDD patients and 2078 controls were statistically evaluated for de novo variant burden in gene families. Results We demonstrate that disease-associated missense variants are enriched at paralog-conserved sites across all disease groups and inheritance models tested. We developed a gene family de novo enrichment framework that identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in NDD patients of which 28 represent novel candidate genes for NDD which are brain expressed and under evolutionary constraint. Conclusion This study represents the first method to incorporate gene family information into a statistical framework to interpret variant data for NDDs and to discover new NDD-associated genes
Downregulation of metastasis suppressor 1(MTSS1) is associated with nodal metastasis and poor outcome in Chinese patients with gastric cancer
<p>Abstract</p> <p>Background</p> <p>The putative tumor metastasis suppressor 1(MTSS1) is an actin-binding scaffold protein that has been implicated to play an important role in carcinogenesis and cancer metastasis, yet its role in the development of gastric cancer has not been well illustrated. In this study, we detected MTSS1 expression and explored its clinical significance in gastric cancer.</p> <p>Methods</p> <p>Immunohistochemistry was performed using tissue microarrays containing gastric adenocarcinoma specimens from 1,072 Chinese patients with normal adjacent mucosa, primary gastric cancer and lymph node (LN) metastasis and specific antibody against MTSS1. MTSS1 mRNA and protein expression were detected by reverse transcription-polymerase chain reaction and Western blotting. The clinical follow-up was done in the 669 patients living in Shanghai that was chose from the 1072 cases.</p> <p>Results</p> <p>Complete loss of MTSS1 expression was observed in 751 cases (70.1%) of the 1,072 primary tumors and 103 (88%) of 117 nodal metastases; and loss of MTSS1 expression was significantly associated with poorly differentiated tumors, large tumor size, deep invasion level, the presence of nodal metastases and advanced disease stage. Moreover, multivariate analysis demonstrated that loss of MTSS1 expression correlated significantly with poor survival rates (RR = 0.194, 95% CI = 0.144-0.261, P < 0.001).</p> <p>Conclusions</p> <p>MTSS1 expression decreased significantly as gastric cancer progressed and metastasized, suggesting MTSS1 may serve as a useful biomarker for the prediction of outcome of gastric cancer.</p
Membrane Docking Geometry of GRP1 PH Domain Bound to a Target Lipid Bilayer: An EPR Site-Directed Spin-Labeling and Relaxation Study
The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers
- …