1,192 research outputs found

    Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots

    Get PDF
    We have theoretically studied the thermoelectric properties of serially coupled quantum dots (SCQD) embedded in an insulator matrix connected to metallic electrodes. In the framework of Keldysh Green's function technique, the Landauer formula of transmission factor is obtained by using the equation of motion method. Based on such analytical expressions of charge and heat currents, we calculate the electrical conductance, Seebeck coefficient, electron thermal conductance and figure of merit (ZT) of SCQD in the linear response regime. The effects of electron Coulomb interactions on the reduction and enhancement of ZT are analyzed. We demonstrate that ZT is not a monotonic increasing function of interdot electron hopping strength (tct_c). We also show that in the absence of phonon thermal conductance, SCQD can reach the Carnot efficiency as tct_c approaches zero.Comment: corrected some argumenet

    Intraprostatic Botulinum Toxin Type A injection in patients with benign prostatic enlargement: duration of the effect of a single treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Botulinum Toxin Type-A (BoNT/A) intraprostatic injection can induce prostatic involution and improve LUTS and urinary flow in patients with Benign Prostatic Enlargement (BPE). However, the duration of these effects is unknown. The objective of this work was to determine the duration of prostate volume reduction after one single intraprostatic injection of 200U of Botulinum Toxin Type-A.</p> <p>Methods</p> <p>This is an extension of a 6 month study in which 21 frail elderly patients with refractory urinary retention and unfit for surgery were submitted to intraprostatic injection of BoNT/A-200U, by ultrasound guided transrectal approach. In spite of frail conditions, eleven patients could be followed during 18 months. Prostate volume, total serum PSA, maximal flow rate (Qmax), residual volume (PVR) and IPSS-QoL scores were determined at 1, 3, 6, 12 and 18 months post-treatment.</p> <p>Results</p> <p>Mean prostate volume at baseline, 82 ± 16 ml progressively decreased from month one coming to 49 ± 9,5 ml (p = 0,003) at month six. From this moment on, prostate volume slowly recovered, becoming identical to baseline at 18 months (73 ± 16 ml, p = 0.03). Albeit non significant, serum PSA showed a 25% decrease from baseline to month 6. The 11 patients resumed spontaneous voiding at month one. Mean Qmax was 11,3 ± 1,7 ml/sec and remained unchanged during the follow-up period. PVR ranged from 55 ± 17 to 82 ± 20 ml and IPSS score from10 to 12 points.</p> <p>Conclusion</p> <p>Intraprostatic BoNT/A injection is safe and can reduce prostate volume for a period of 18 months. During this time a marked symptomatic improvement can be maintained.</p

    Mesoscale modeling and simulation of microstructure evolution during dynamic recrystallization of a Ni-based superalloy

    Get PDF
    Microstructural evolution and plastic flow characteristics of a Ni-based superalloy were investigated using a simulative model that couples the basic metallurgical principle of dynamic recrystallization (DRX) with the twodimensional (2D) cellular automaton (CA). Variation of dislocation density with local strain of deformation is considered for accurate determination of the microstructural evolution during DRX. The grain topography, the grain size and the recrystallized fraction can be well predicted by using the developed CA model, which enables to the establishment of the relationship between the flow stress, dislocation density, recrystallized fraction volume, recrystallized grain size and the thermomechanical parameters

    A Novel Ultrasonic Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    Get PDF
    Prior studies have shown that ultrasonic velocity/time-of-flight imaging that uses back surface echo reflections to gauge volumetric material quality is well suited (perhaps more so than is the commonlyused peak amplitude c-scanning) for quantitative characterization of microstructural gradients. Such gradients include those due to pore fraction, density, fiber fraction, and chemical composition variations [11–15]. Variations in these microstructural factors can affect the uniformity of physical performance (including mechanical [stiffness, strength], thermal [conductivity], and electrical [conductivity, superconducting transition temperature], etc. performance) of monolithic and composite [1,3,6,12]. A weakness of conventional ultrasonic velocity/time-of-flight imaging (as well as to a lesser extent ultrasonic peak amplitude c-scanning where back surface echoes are gated [17] is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this type of imaging’s usefulness in practical applications. The effect of thickness is easily observed from the equation for pulse-echo waveform time-of-flight (2τ) between the first front surface echo (FS) and the first back surface echo (B1), or between two successive back surface echoes where: 2τ=(2d)V (1) where d is the sample thickness and V is the velocity of ultrasound in the material. Interpretation of the time-of-flight image is difficult as thickness variation effects can mask or overemphasize the true microstructural variation portrayed in the image of a part containing thickness variations. Thickness effects on time-of-flight can also be interpreted by rearranging equation (1) to calculate velocity: V=(2d)2τ (2) such that velocity is inversely proportional to time-of-flight. Velocity and time-of-flight maps will be affected similarly (although inversely in terms of magnitude) by thickness variations, and velocity maps are used in this investigation to indicate time-of-flight variations.</p

    Synthesis and Biological Evaluation of Phenanthrenes as Cytotoxic Agents with Pharmacophore Modeling and ChemGPS-NP Prediction as Topo II Inhibitors

    Get PDF
    In a structure-activity relationship (SAR) study, 3-methoxy-1,4-phenanthrenequinones, calanquinone A (6a), denbinobin (6b), 5-OAc-calanquinone A (7a) and 5-OAc-denbinobin (7b), have significantly promising cytotoxicity against various human cancer cell lines (IC50 0.08–1.66 µg/mL). Moreover, we also established a superior pharmacophore model for cytotoxicity (r = 0.931) containing three hydrogen bond acceptors (HBA1, HBA2 and HBA3) and one hydrophobic feature (HYD) against MCF-7 breast cancer cell line. The pharmacophore model indicates that HBA3 is an essential feature for the oxygen atom of 5-OH in 6a–b and for the carbonyl group of 5-OCOCH3 in 7a–b, important for their cytotoxic properties. The SAR for moderately active 5a–b (5-OCH3), and highly active 6a–b and 7a–b, are also elaborated in a spatial aspect model. Further rational design and synthesis of new cytotoxic phenanthrene analogs can be implemented via this model. Additionally, employing a ChemGPS-NP based model for cytotoxicity mode of action (MOA) provides support for a preliminary classification of compounds 6a–b as topoisomerase II inhibitors

    Comparison of coplanar and noncoplanar intensity-modulated radiation therapy and helical tomotherapy for hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare the differences in dose-volume data among coplanar intensity modulated radiotherapy (IMRT), noncoplanar IMRT, and helical tomotherapy (HT) among patients with hepatocellular carcinoma (HCC) and portal vein thrombosis (PVT).</p> <p>Methods</p> <p>Nine patients with unresectable HCC and PVT underwent step and shoot coplanar IMRT with intent to deliver 46 - 54 Gy to the tumor and portal vein. The volume of liver received 30Gy was set to keep less than 30% of whole normal liver (V30 < 30%). The mean dose to at least one side of kidney was kept below 23 Gy, and 50 Gy as for stomach. The maximum dose was kept below 47 Gy for spinal cord. Several parameters including mean hepatic dose, percent volume of normal liver with radiation dose at X Gy (Vx), uniformity index, conformal index, and doses to organs at risk were evaluated from the dose-volume histogram.</p> <p>Results</p> <p>HT provided better uniformity for the planning-target volume dose coverage than both IMRT techniques. The noncoplanar IMRT technique reduces the V10 to normal liver with a statistically significant level as compared to HT. The constraints for the liver in the V30 for coplanar IMRT vs. noncoplanar IMRT vs. HT could be reconsidered as 21% vs. 17% vs. 17%, respectively. When delivering 50 Gy and 60-66 Gy to the tumor bed, the constraints of mean dose to the normal liver could be less than 20 Gy and 25 Gy, respectively.</p> <p>Conclusion</p> <p>Noncoplanar IMRT and HT are potential techniques of radiation therapy for HCC patients with PVT. Constraints for the liver in IMRT and HT could be stricter than for 3DCRT.</p

    Detection of monoclonal immunoglobulin heavy chain gene rearrangement (FR3) in Thai malignant lymphoma by High Resolution Melting curve analysis

    Get PDF
    <p>Abstract</p> <p>Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction followed by heteroduplex has currently become standard whereas fluorescent fragment analysis (GeneScan) has been used for confirmation test. In this study, three techniques had been compared: thermocycler polymerase chain reaction (PCR) followed by heteroduplex and polyacrylamide gel electrophoresis, GeneScan analysis, and real time PCR with High Resolution Melting curve analysis (HRM). The comparison was carried out with DNA extracted from paraffin embedded tissues diagnosed as B- cell non-Hodgkin lymphoma. Specific PCR primers sequences for IgH gene variable region 3, including fluorescence labeled IgH primers were used and results were compared with HRM. In conclusion, the detection IgH gene rearrangement by HRM in the LightCycler System showed potential for distinguishing monoclonality from polyclonality in B-cell non-Hodgkin lymphoma.</p> <p>Introduction</p> <p>Malignant lymphoma, especially non-Hodgkin lymphoma, is one of the most common hematologic malignancies in Thailand. The incidence rate as reported by Ministry of Public Health is 3.1 per 100,000 population in female whereas the rate in male is 4.5 per 100,000 population <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. At Siriraj Hospital, the new cases diagnosed as malignant lymphoma were 214.6 cases/year <abbrgrp><abbr bid="B2">2</abbr></abbrgrp>. The diagnosis of malignant lymphoma is often problematic, especially in early stages of the disease. Therefore, detection of antigen receptor gene rearrangement including T cell receptor (TCR) and immunoglobulin heavy chain (IgH) by polymerase chain reaction (PCR) assay has recently become a standard laboratory test for discrimination of reactive from malignant clonal lymphoproliferation <abbrgrp><abbr bid="B3">3</abbr><abbr bid="B4">4</abbr></abbrgrp>. Analyzing DNA extracted from formalin-fixed, paraffin-embedded tissues by multiplex PCR techniques is more rapid, accurate and highly sensitive. Measuring the size of the amplicon from PCR analysis could be used to diagnose malignant lymphoma with monoclonal pattern showing specific and distinct bands detected on acrylamide gel electrophoresis. However, this technique has some limitations and some patients might require a further confirmation test such as GeneScan or fragment analysis <abbrgrp><abbr bid="B5">5</abbr><abbr bid="B6">6</abbr></abbrgrp>.</p> <p>GeneScan technique or fragment analysis reflects size and peak of DNA by using capillary gel electrophoresis. This technique is highly sensitive and can detect 0.5-1% of clonal lymphoid cells. It measures the amplicons by using various fluorescently labeled primers at forward or reverse sides and a specific size standard. Using a Genetic Analyzer machine and GeneMapper software (Applied Bioscience, USA), the monoclonal pattern revealed one single, sharp and high peak at the specific size corresponding to acrylamide gel pattern, whereas the polyclonal pattern showed multiple and small peak condensed at the same size standard. This technique is the most sensitive and accurate technique; however, it usually requires high technical experience and is also of high cost <abbrgrp><abbr bid="B7">7</abbr></abbrgrp>. Therefore, rapid and more cost effective technique are being sought.</p> <p>LightCycler PCR performs the diagnostic detection of amplicon via melting curve analysis within 2 hours with the use of a specific dye <abbrgrp><abbr bid="B8">8</abbr><abbr bid="B9">9</abbr></abbrgrp>. This dye consists of two types: one known as SYBR-Green I which is non specific and the other named as High Resolution Melting analysis (HRM) which is highly sensitive, more accurate and stable. Several reports demonstrated that this new instrument combined with DNA intercalating dyes can be used to discriminate sequence changes in PCR amplicon without manual handling of PCR product <abbrgrp><abbr bid="B10">10</abbr><abbr bid="B11">11</abbr></abbrgrp>. Therefore, current investigations using melting curve analysis are being developed <abbrgrp><abbr bid="B12">12</abbr><abbr bid="B13">13</abbr></abbrgrp>.</p> <p>In this study, three different techniques were compared to evaluate the suitability of LightCycler PCR with HRM as the clonal diagnostic tool for IgH gene rearrangement in B-cell non-Hogdkin lymphoma, i.e. thermocycler PCR followed by heteroduplex analysis and PAGE, GeneScan analysis and LightCycler PCR with HRM.</p
    corecore