588 research outputs found
Phase transitions for the Lifshitz black holes
We study possibility of phase transitions between Lifshitz black holes and
other configurations by using free energies explicitly. A phase transition
between Lifshitz soliton and Lifshitz black hole might not occur in three
dimensions. We find that a phase transition between Lifshitz and BTZ black
holes unlikely occurs because they have different asymptotes. Similarly, we
point out that any phase transition between Lifshitz and black branes unlikely
occurs in four dimensions since they have different asymptotes. This is
consistent with a necessary condition for taking a phase transition in the
gravitational system, which requires the same asymptote.Comment: 19 pages, 7 figures, a revised version to appear in EPJ
Dilaton gravity approach to three dimensional Lifshitz black hole
The z=3 Lifshitz black hole is an exact black hole solution to the new
massive gravity in three dimensions. In order to understand this black hole
clearly, we perform a dimensional reduction to two dimensional dilaton gravity
by utilizing the circular symmetry. Considering the linear dilaton, we find the
same Lifshitz black hole in two dimensions. This implies that all thermodynamic
quantities of the z=3 Lifshitz black hole could be obtained from its
corresponding black hole in two dimensions. As a result, we derive the
temperature, mass, heat capacity, Bekesnstein-Hawking entropy, and free energy.Comment: 13 pages, 1 figure, version to appear in EPJ
Stability analysis of f(R)-AdS black holes
We study the stability of f(R)-AdS (Schwarzschild-AdS) black hole obtained
from f(R) gravity. In order to resolve the difficulty of solving fourth order
linearized equations, we transform f(R) gravity into the scalar-tensor theory
by introducing two auxiliary scalars. In this case, the linearized curvature
scalar becomes a dynamical scalaron, showing that all linearized equations are
second order. Using the positivity of gravitational potentials and S-deformed
technique allows us to guarantee the stability of f(R)-AdS black hole if the
scalaron mass squared satisfies the Breitenlohner-Freedman bound. This is
confirmed by computing quasinormal frequencies of the scalaron for large
f(R)-AdS black hole.Comment: 17 pages, 1 figure, version to appear in EPJ
Absorption cross section in Lifshitz black hole
We derive the absorption cross section of a minimally coupled scalar in the
Lifshitz black hole obtained from the new massive gravity. The absorption cross
section reduces to the horizon area in the low energy and massless limit of
s-wave mode propagation, indicating that the Lifshitz black hole also satisfies
the universality of low energy absorption cross section for black holes.Comment: 13 pages, 1 figure, version to appear in EPJ
Testing Holographic Principle from Logarithmic and Higher Order Corrections to Black Hole Entropy
The holographic principle is tested by examining the logarithmic and higher
order corrections to the Bekenstein-Hawking entropy of black holes. For the BTZ
black hole, I find some disagreement in the principle for a holography screen
at spatial infinity beyond the leading order, but a holography with the screen
at the horizon does not, with an appropriate choice of a period parameter,
which has been undetermined at the leading order, in Carlip's horizon-CFT
approach for black hole entropy in any dimension. Its higher dimensional
generalization is considered to see a universality of the parameter choice. The
horizon holography from Carlip's is compared with several other realizations of
a horizon holography, including induced Wess-Zumino-Witten model approaches and
quantum geometry approach, but none of the these agrees with Carlip's, after
clarifications of some confusions. Some challenging open questions are listed
finally.Comment: To appear in JHEP. The corrections in Sec.2 with those that follow
are more clearly explained. Careful distingtion between the implications of
my results to AdS/CFT and to the holograhic principl
Higher order WKB corrections to black hole entropy in brick wall formalism
We calculate the statistical entropy of a quantum field with an arbitrary
spin propagating on the spherical symmetric black hole background by using the
brick wall formalism at higher orders in the WKB approximation. For general
spins, we find that the correction to the standard Bekenstein-Hawking entropy
depends logarithmically on the area of the horizon. Furthermore, we apply this
analysis to the Schwarzschild and Schwarzschild-AdS black holes and discuss our
results.Comment: 21 pages, published versio
New agegraphic dark energy in Horava-Lifshitz cosmology
We investigate the new agegraphic dark energy scenario in a universe governed
by Horava-Lifshitz gravity. We consider both the detailed and non-detailed
balanced version of the theory, we impose an arbitrary curvature, and we allow
for an interaction between the matter and dark energy sectors. Extracting the
differential equation for the evolution of the dark energy density parameter
and performing an expansion of the dark energy equation-of-state parameter, we
calculate its present and its low-redshift value as functions of the dark
energy and curvature density parameters at present, of the Horava-Lifshitz
running parameter , of the new agegraphic dark energy parameter ,
and of the interaction coupling . We find that
and . Although this analysis indicates that the
scenario can be compatible with observations, it does not enlighten the
discussion about the possible conceptual and theoretical problems of
Horava-Lifshitz gravity.Comment: 17 pages, no figures, version published at JCA
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
Search for antihelium in cosmic rays
The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle
Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320
and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity
range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper
limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
- …