The holographic principle is tested by examining the logarithmic and higher
order corrections to the Bekenstein-Hawking entropy of black holes. For the BTZ
black hole, I find some disagreement in the principle for a holography screen
at spatial infinity beyond the leading order, but a holography with the screen
at the horizon does not, with an appropriate choice of a period parameter,
which has been undetermined at the leading order, in Carlip's horizon-CFT
approach for black hole entropy in any dimension. Its higher dimensional
generalization is considered to see a universality of the parameter choice. The
horizon holography from Carlip's is compared with several other realizations of
a horizon holography, including induced Wess-Zumino-Witten model approaches and
quantum geometry approach, but none of the these agrees with Carlip's, after
clarifications of some confusions. Some challenging open questions are listed
finally.Comment: To appear in JHEP. The corrections in Sec.2 with those that follow
are more clearly explained. Careful distingtion between the implications of
my results to AdS/CFT and to the holograhic principl