729 research outputs found

    Kinetic energy driven superconductivity in doped cuprates

    Full text link
    Within the t-J model, the mechanism of superconductivity in doped cuprates is studied based on the partial charge-spin separation fermion-spin theory. It is shown that dressed holons interact occurring directly through the kinetic energy by exchanging dressed spinon excitations, leading to a net attractive force between dressed holons, then the electron Cooper pairs originating from the dressed holon pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground-state. The electron superconducting transition temperature is determined by the dressed holon pair transition temperature, and is proportional to the concentration of doped holes in the underdoped regime. With the common form of the electron Cooper pair, we also show that there is a coexistence of the electron Cooper pair and antiferromagnetic short-range correlation, and hence the antiferromagnetic short-range fluctuation can persist into the superconducting state. Our results are qualitatively consistent with experiments.Comment: 6 pages, Revtex, two figures are included, corrected typo

    Correlation between chemical composition, EHGE and TME of corn for ducks

    Get PDF
    Correlations between chemical composition, enzymatic hydrolysate gross energy (EHGE), and true metabolizable energy (TME) of corn for ducks were investigated. Twenty-two corn samples were collected from various regions in 11 provinces of China. The crude protein (CP), ether extract (EE), neutral detergent fibre (NDF), Ash, gross energy (GE), dry matter (DM), amylopectin (AP), amylose (AM), total starch (TS), and AP/AM were determined for each sample. Five of the samples of corn were chosen at the mean, mean ± 1 standard deviation (SD), and mean ± 2 SD based on AP/AM. The EHGE of these samples was analysed using the pepsin-artificial small intestinal fluid enzymatic method. These five samples were also force-fed to male Cherry Valley ducks to assay their TME. Finally, correlation analyses were performed, and regression equations were established. Ash content, GE, and TS were highly related to EHGE. Univariate prediction equations were EHGE = 11.8566Ash-0.0421 (P <0.05), EHGE = 0.1535GE1.5642 (P <0.05), and EHGE = 0.1020TS1.1561 (P <0.05). The total starch, AP/AM, and ash of the chemical compositions were highly related to TME. The corresponding univariate regression equations were TME = 21.9355TS-0.0910 (P <0.05), TME = 15.6590AP/AM-0.0559 (P <0.05), and TME = 15.0778Ash0.0442 (P <0.05). The mean EHGE was equivalent to 78.5% of TME, but their correlation coefficient was low. In conclusion, chemical composition was predictive of EHGE and TME of corn samples for ducks, but the correlation of EHGE and TME was low Keywords: Cherry Valley duck, amylopectin, amylose, true metabolizable energ

    Indentation creep of a Ti-based metallic glass

    Get PDF

    The temperature dependence of perpendicular anisotropy in Co/Pt and Co/Au multilayer films

    Full text link

    Knockout of p75 neurotrophin receptor attenuates the hyperphosphorylation of Tau in pR5 mouse model

    Get PDF
    p75 neurotrophin receptor (p75NTR) has been implicated in Alzheimer's disease (AD). However, whether p75NTR is involved in Tau hyperphosphorylation, one of the pathologies observed in AD, remains unclear. In our previous study, the extracellular domain of p75NTR blocked amyloid beta (Aβ) toxicity and attenuated Aβ-induced Tau hyperphosphorylation. Here we show that, in the absence of Aβ, p75NTR regulates Tau phosphorylation in the transgenic mice with the P301L human Tau mutation (pR5). The knockout of p75NTR in pR5 mice attenuated the phosphorylation of human Tau. In addition, the elevated activity of kinases responsible for Tau phosphorylation including glycogen synthase kinase 3 beta; cyclin-dependent-kinase 5; and Rho-associated protein kinase was also inhibited when p75NTR is knocked out in pR5 mice at 9 months of age. The increased caspase-3 activity observed in pR5 mice was also abolished in the absence of p75NTR. Our study also showed that p75NTR is required for Aβ- and pro-brain derived neurotrophin factor (proBDNF)-induced Tau phosphorylation, in vitro. Overall, our data indicate that p75NTR is required for Tau phosphorylation, a key event in the formation of neurofibrillary tangles, another hallmark of AD. Thus, targeting p75NTR could reduce or prevent the pathologic hyperphosphorylation of Tau.Noralyn B. Mañucat-Tan, Lin-Lin Shen, Larisa Bobrovskaya, Mohammed Al-hawwas, Fiona H. Zhou, Yan-Jiang Wang, Xin-Fu Zho

    The molecular systems composed of the charmed mesons in the HSˉ+h.c.H\bar{S}+h.c. doublet

    Full text link
    We study the possible heavy molecular states composed of a pair of charm mesons in the H and S doublets. Since the P-wave charm-strange mesons Ds0(2317)D_{s0}(2317) and Ds1(2460)D_{s1}(2460) are extremely narrow, the future experimental observation of the possible heavy molecular states composed of Ds/DsD_s/D_s^\ast and Ds0(2317)/Ds1(2460)D_{s0}(2317)/D_{s1}(2460) may be feasible if they really exist. Especially the possible JPC=1J^{PC}=1^{--} states may be searched for via the initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and Corrected typos

    Electron Dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta}: Evidence for the Pseudogap State and Unconventional c-axis Response

    Full text link
    Infrared reflectance measurements were made with light polarized along the a- and c-axis of both superconducting and antiferromagnetic phases of electron doped Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta}. The results are compared to characteristic features of the electromagnetic response in hole doped cuprates. Within the CuO2_2 planes the frequency dependent scattering rate, 1/τ(ω)\tau(\omega), is depressed below \sim 650 cm1^{-1}; this behavior is a hallmark of the pseudogap state. While in several hole doped compounds the energy scales associated with the pseudogap and superconducting states are quite close, we are able to show that in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta} the two scales differ by more than one order of magnitude. Another feature of the in-plane charge response is a peak in the real part of the conductivity, σ1(ω)\sigma_1(\omega), at 50-110 cm1^{-1} which is in sharp contrast with the Drude-like response where σ1(ω)\sigma_1(\omega) is centered at ω=0\omega=0. This latter effect is similar to what is found in disordered hole doped cuprates and is discussed in the context of carrier localization. Examination of the c-axis conductivity gives evidence for an anomalously broad frequency range from which the interlayer superfluid is accumulated. Compelling evidence for the pseudogap state as well as other characteristics of the charge dynamics in Nd1.85_{1.85}Ce.15_{.15}CuO4+δ_{4+\delta} signal global similarities of the cuprate phase diagram with respect to electron and hole doping.Comment: Submitted to PR

    Transition from in-plane to out-of-plane azimuthal enhancement in Au+Au collisions

    Full text link
    The incident energy at which the azimuthal distributions in semi-central heavy ion collisions change from in-plane to out-of-plane enhancement, E_tran, is studied as a function of mass of emitted particles, their transverse momentum and centrality for Au+Au collisions. The analysis is performed in a reference frame rotated with the sidewards flow angle, Theta_flow, relative to the beam axis. A systematic decrease of E_tran as function of mass of the reaction products, their transverse momentum and collision centrality is evidenced. The predictions of a microscopic transport model (IQMD) are compared with the experimental results.Comment: 32 pages, Latex, 22 eps figures, accepted for publication in Nucl. Phys.
    corecore