12 research outputs found

    Uncoupling of oxidative phosphorylation and antioxidants affect fusion of primary human myoblasts in vitro

    No full text
    Reactive oxygen species are at the origin of muscular fatigue and atrophy. They are also linked to muscular dystrophies, a group of human genetic diseases. Several studies point to the benefits of application of antioxidants and uncouplers of oxidative phosphorylation to improve the functional activity of normal and pathological muscles. Other studies point to potential dangers of these compounds. Aim. To study the effect of mitochondria-targeted antioxidants and uncouplers of oxidative phosphorylation on muscle differentiation. Methods. Muscle differentiation was induced by serum starvation and monitored by troponin T staining. Results. the mitochondria-targeted uncoupler of oxidative phosphorylation C12TPP, but not the mitochondria-targeted antioxidant SkQ1, inhibit fusion of primary myoblasts upon their differentiation, but do not affect the synthesis of troponin T, a protein marker of muscle differentiation. Conclusion. The effect of C12TPP could be at least partially mediated by inhibition of reactive oxygen species (ROS) production since antioxidant N-acetylcysteine at high doses also inhibited differentiation of myoblasts.Активні Ρ„ΠΎΡ€ΠΌΠΈ кисню (АЀК) ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ‚ΠΈ ΠΌ'язову Π²Ρ‚ΠΎΠΌΡƒ Ρ– Π°Ρ‚Ρ€ΠΎΡ„Ρ–ΡŽ ΠΌ'язів. АЀК Ρ‚Π°ΠΊΠΎΠΆ ΠΏΠΎΠ²'язані Π· ΠΌ'язовими дистрофії. Π‘Π΅Π·Π»Ρ–Ρ‡ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π²ΠΊΠ°Π·ΡƒΡ” Π½Π° ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² антиоксидантів Ρ– Ρ€Π°Π·ΠΎΠ±Ρ‰Ρ–Ρ‚Π΅Π»Π΅ΠΉ окисного Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΌ'язів Π² Π½ΠΎΡ€ΠΌΡ– Ρ‚Π° ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ—. ΠœΠ΅Ρ‚Π°. Π’ΠΈΠ²Ρ‡ΠΈΡ‚ΠΈ Π²ΠΏΠ»ΠΈΠ² ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ—-спрямованих антиоксидантів Ρ– Ρ€Π°Π·ΠΎΠ±Ρ‰Ρ–Ρ‚Π΅Π»Π΅ΠΉ окисного Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ Π½Π° Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΈΡ… міобластів людини. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ—-спрямований Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚Π΅Π»ΡŒ окисного Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ C12TPP, Π°Π»Π΅ Π½Π΅ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ—-спрямований антиоксидант SkQ1, ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΡ” злиття міобластів ΠΏΡ€ΠΈ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ–, ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π½Π΅ Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‡ΠΈ Π½Π° Π΅ΠΊΡΠΏΡ€Π΅ΡΡ–ΡŽ Ρ‚Ρ€ΠΎΠΏΠΎΠ½ΠΈΠ½Π° Π’, Π±Ρ–Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΌ'язової Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ. Висновки. Π’ΠΏΠ»ΠΈΠ² C12TPP ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ частково Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½ΠΎ пригнічСнням АЀК, Ρ‚Π°ΠΊ як високі ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— класичного антиоксиданту N-ацСтилцистСїну Ρ‚Π°ΠΊΠΎΠΆ Ρ–Π½Π³Ρ–Π±ΡƒΠ²Π°Π»ΠΈ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ міобластів людини.АктивныС Ρ„ΠΎΡ€ΠΌΡ‹ кислорода (АЀК) ΠΌΠΎΠ³ΡƒΡ‚ Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΡƒΡŽ ΡƒΡΡ‚Π°Π»ΠΎΡΡ‚ΡŒ ΠΈ Π°Ρ‚Ρ€ΠΎΡ„ΠΈΡŽ ΠΌΡ‹ΡˆΡ†. АЀК Ρ‚Π°ΠΊΠΆΠ΅ связаны с ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹ΠΌΠΈ дистрофиями. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ исслСдований ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ влияниС антиоксидантов ΠΈ Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ фосфорилирования Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΡ‹ΡˆΡ† Π² Π½ΠΎΡ€ΠΌΠ΅ ΠΈ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ЦСль. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ влияниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎ-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… антиоксидантов ΠΈ Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ фосфорилирования Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… миобластов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎ-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚Π΅Π»ΡŒ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ фосфорилирования C12TPP, Π½ΠΎ Π½Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎ-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ антиоксидант SkQ1, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ слияниС миобластов ΠΏΡ€ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅, ΠΏΡ€ΠΈ этом Π½Π΅ влияя Π½Π° ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Ρ‚Ρ€ΠΎΠΏΠΎΠ½ΠΈΠ½Π° Π’, Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ВлияниС C12TPP ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ частично Π²Ρ‹Π·Π²Π°Π½ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ АЀК, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ высокиС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ классичСского антиоксиданта N-ацСтилцистСина Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ миобластов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Applicability of perturbative QCD to Λb→Λc\Lambda_b \to \Lambda_c decays

    Full text link
    We develop perturbative QCD factorization theorem for the semileptonic heavy baryon decay Ξ›bβ†’Ξ›clΞ½Λ‰\Lambda_b \to \Lambda_c l\bar{\nu}, whose form factors are expressed as the convolutions of hard bb quark decay amplitudes with universal Ξ›b\Lambda_b and Ξ›c\Lambda_c baryon wave functions. Large logarithmic corrections are organized to all orders by the Sudakov resummation, which renders perturbative expansions more reliable. It is observed that perturbative QCD is applicable to Ξ›bβ†’Ξ›c\Lambda_b \to \Lambda_c decays for velocity transfer greater than 1.2. Under requirement of heavy quark symmetry, we predict the branching ratio B(Ξ›bβ†’Ξ›clΞ½Λ‰)∼2B(\Lambda_b \to \Lambda_c l{\bar\nu})\sim 2%, and determine the Ξ›b\Lambda_b and Ξ›c\Lambda_c baryon wave functions.Comment: 12 pages in Latex file, 3 figures in postscript files, some results are changed, but the conclusion is the sam

    Rare Decays of \Lambda_b->\Lambda + \gamma and \Lambda_b ->\Lambda + l^{+} l^{-} in the Light-cone Sum Rules

    Full text link
    Within the Standard Model, we investigate the weak decays of Ξ›bβ†’Ξ›+Ξ³\Lambda_b \to \Lambda + \gamma and Ξ›bβ†’Ξ›+l+lβˆ’\Lambda_b \to \Lambda + l^{+} l^{-} with the light-cone sum rules approach. The higher twist distribution amplitudes of Ξ›\Lambda baryon to the leading conformal spin are included in the sum rules for transition form factors. Our results indicate that the higher twist distribution amplitudes almost have no influences on the transition form factors retaining the heavy quark spin symmetry, while such corrections can result in significant impacts on the form factors breaking the heavy quark spin symmetry. Two phenomenological models (COZ and FZOZ) for the wave function of Ξ›\Lambda baryon are also employed in the sum rules for a comparison, which can give rise to the form factors approximately 5 times larger than that in terms of conformal expansion. Utilizing the form factors calculated in LCSR, we then perform a careful study on the decay rate, polarization asymmetry and forward-backward asymmetry, with respect to the decays of Ξ›b→Λγ\Lambda_b \to \Lambda \gamma, Ξ›l+lβˆ’\Lambda l^{+}l^{-}.Comment: 38 pages, 15 figures, some typos are corrected and more references are adde

    Exclusive semileptonic rare decays Bβˆ’>(B ->_ (K,K^*) \ell^+ \ell^- in supersymmetric theories

    Full text link
    The invariant mass spectrum, forward-backward asymmetry, and lepton polarizations of the exclusive processes Bβ†’K(Kβˆ—)β„“+β„“βˆ’,β„“=ΞΌ,Ο„B\to K(K^*)\ell^+ \ell^-, \ell=\mu, \tau are analyzed under supersymmetric context. Special attention is paid to the effects of neutral Higgs bosons (NHBs). Our analysis shows that the branching ratio of the process \bkm can be quite largely modified by the effects of neutral Higgs bosons and the forward-backward asymmetry would not vanish. For the process \bksm, the lepton transverse polarization is quite sensitive to the effects of NHBs, while the invariant mass spectrum, forward-backward asymmetry, and lepton longitudinal polarization are not. For both \bkt and \bkst, the effects of NHBs are quite significant. The partial decay widths of these processes are also analyzed, and our analysis manifest that even taking into account the theoretical uncertainties in calculating weak form factors, the effects of NHBs could make SUSY shown up.Comment: Several references are added, typo are correcte

    Charmless Exclusive Baryonic B Decays

    Full text link
    We present a systematical study of two-body and three-body charmless baryonic B decays. Branching ratios for two-body modes are in general very small, typically less than 10βˆ’610^{-6}, except that \B(B^-\to p \bar\Delta^{--})\sim 1\times 10^{-6}. In general, BΛ‰β†’NΞ”Λ‰>BΛ‰β†’NNΛ‰\bar B\to N\bar\Delta>\bar B\to N\bar N due to the large coupling constant for Ξ£bβ†’BΞ”\Sigma_b\to B\Delta. For three-body modes we focus on octet baryon final states. The leading three-dominated modes are BΛ‰0β†’pnΛ‰Ο€βˆ’(Οβˆ’),npΛ‰Ο€+(ρ+)\bar B^0\to p\bar n\pi^-(\rho^-), n\bar p\pi^+(\rho^+) with a branching ratio of order 3Γ—10βˆ’63\times 10^{-6} for BΛ‰0β†’pnΛ‰Ο€βˆ’\bar B^0\to p\bar n\pi^- and 8Γ—10βˆ’68\times 10^{-6} for BΛ‰0β†’pnΛ‰Οβˆ’\bar B^0\to p\bar n\rho^-. The penguin-dominated decays with strangeness in the meson, e.g., Bβˆ’β†’ppΛ‰Kβˆ’(βˆ—)B^-\to p\bar p K^{-(*)} and BΛ‰0β†’pnΛ‰Kβˆ’(βˆ—),nnΛ‰KΛ‰0(βˆ—)\bar B^0\to p\bar n K^{-(*)}, n\bar n \bar K^{0(*)}, have appreciable rates and the NNΛ‰N\bar N mass spectrum peaks at low mass. The penguin-dominated modes containing a strange baryon, e.g., BΛ‰0β†’Ξ£0pΛ‰Ο€+,Ξ£βˆ’nΛ‰Ο€+\bar B^0\to \Sigma^0\bar p\pi^+, \Sigma^-\bar n\pi^+, have branching ratios of order (1∼4)Γ—10βˆ’6(1\sim 4)\times 10^{-6}. In contrast, the decay rate of BΛ‰0β†’Ξ›pΛ‰Ο€+\bar B^0\to\Lambda\bar p\pi^+ is smaller. We explain why some of charmless three-body final states in which baryon-antibaryon pair production is accompanied by a meson have a larger rate than their two-body counterparts: either the pole diagrams for the former have an anti-triplet bottom baryon intermediate state, which has a large coupling to the BB meson and the nucleon, or they are dominated by the factorizable external WW-emission process.Comment: 46 pages and 3 figures, to appear in Phys. Rev. D. Major changes are: (i) Calculations of two-body baryonic B decays involving a Delta resonance are modified, and (ii) Penguin-dominated modes B-> Sigma+N(bar)+p are discusse

    The masses and decay widths of heavy hybrid mesons

    Full text link
    We first derive the mass sum rules for the heavy hybrid mesons to obtain the binding energy and decay constants in the leading order of HQET. The pionic couplings between the lightest 1βˆ’+1^{-+} hybrid (QqΛ‰g)(Q\bar q g) and the lowest three heavy meson doublets are calculated with the light cone QCD sum rules. With SUf(3)SU_f (3) flavor symmetry we calculate the widths for all the possible two-body decay processes with a Goldstone boson in the final state. The total width of the 1βˆ’+1^{-+} hybrid is estimated to be 300 MeV. We find the dominant decay mode of the 1βˆ’+1^{-+} hybrid is 1βˆ’+β†’Ο€+1+1^{-+}\to \pi + 1^+ where the 1+1^+ heavy meson belongs to the (1+,2+)(1^+,2^+) doublet. Its branching ratio is about 80% so this mode can be used for the experimental search of the lowest heavy hybrid meson.Comment: 20 pages + 12 PS figures, introduction revised, Fig 7 updated, to appear in Phys. Rev.

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Measurements of J/psi --> p \bar{p}

    Full text link
    The process J/\psi --> p \bar{p} is studied using 57.7 X 10^6 J/\psi events collected with the BESII detector at the Beijing Electron Positron Collider. The branching ratio is determined to be Br(J/\psi --> p \bar{p})=(2.26 +- 0.01 +- 0.14) X 10^{-3}, and the angular distribution is well described by \frac{dN}{d cos\theta_p}=1+\alpha\cos^2\theta_p with \alpha = 0.676 +- 0.036 +- 0.042, where \theta_p is the angle between the proton and beam directions. The value of \alpha obtained is in good agreement with the predictions of first-order QCD.Comment: 6 pages, 2 figures, RevTex4, Submitted to Phys.Lett.

    Study of the decay mechanism for B+ to p pbar K+ and B+ to p pbar pi+

    Full text link
    We study the characteristics of the low mass ppbar enhancements near threshold in the three-body decays B+ to p pbar K+ and B+ to p pbar pi+. We observe that the proton polar angle distributions in the ppbar helicity frame in the two decays have the opposite polarity, and measure the forward-backward asymmetries as a function of the ppbar mass for the p pbar K+ mode. We also search for the intermediate two-body decays, B+ to pbar Delta++ and B+ to p Delta0bar, and set upper limits on their branching fractions. These results are obtained from a 414 fb^{-1} data sample that contains 449 times 10^6 BBbar events collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ e- collider.Comment: 15 pages, 5 figures (14 figure files), revisions to Phys. Lett.

    Uncoupling of oxidative phosphorylation and antioxidants affect fusion of primary human myoblasts in vitro

    No full text
    Reactive oxygen species are at the origin of muscular fatigue and atrophy. They are also linked to muscular dystrophies, a group of human genetic diseases. Several studies point to the benefits of application of antioxidants and uncouplers of oxidative phosphorylation to improve the functional activity of normal and pathological muscles. Other studies point to potential dangers of these compounds. Aim. To study the effect of mitochondria-targeted antioxidants and uncouplers of oxidative phosphorylation on muscle differentiation. Methods. Muscle differentiation was induced by serum starvation and monitored by troponin T staining. Results. the mitochondria-targeted uncoupler of oxidative phosphorylation C12TPP, but not the mitochondria-targeted antioxidant SkQ1, inhibit fusion of primary myoblasts upon their differentiation, but do not affect the synthesis of troponin T, a protein marker of muscle differentiation. Conclusion. The effect of C12TPP could be at least partially mediated by inhibition of reactive oxygen species (ROS) production since antioxidant N-acetylcysteine at high doses also inhibited differentiation of myoblasts.Активні Ρ„ΠΎΡ€ΠΌΠΈ кисню (АЀК) ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Ρ‚ΠΈ ΠΌ'язову Π²Ρ‚ΠΎΠΌΡƒ Ρ– Π°Ρ‚Ρ€ΠΎΡ„Ρ–ΡŽ ΠΌ'язів. АЀК Ρ‚Π°ΠΊΠΎΠΆ ΠΏΠΎΠ²'язані Π· ΠΌ'язовими дистрофії. Π‘Π΅Π·Π»Ρ–Ρ‡ Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Π²ΠΊΠ°Π·ΡƒΡ” Π½Π° ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΠΉ Π²ΠΏΠ»ΠΈΠ² антиоксидантів Ρ– Ρ€Π°Π·ΠΎΠ±Ρ‰Ρ–Ρ‚Π΅Π»Π΅ΠΉ окисного Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΌ'язів Π² Π½ΠΎΡ€ΠΌΡ– Ρ‚Π° ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ—. ΠœΠ΅Ρ‚Π°. Π’ΠΈΠ²Ρ‡ΠΈΡ‚ΠΈ Π²ΠΏΠ»ΠΈΠ² ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ—-спрямованих антиоксидантів Ρ– Ρ€Π°Π·ΠΎΠ±Ρ‰Ρ–Ρ‚Π΅Π»Π΅ΠΉ окисного Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ Π½Π° Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ ΠΏΠ΅Ρ€Π²ΠΈΠ½Π½ΠΈΡ… міобластів людини. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ—-спрямований Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚Π΅Π»ΡŒ окисного Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΡŽΠ²Π°Π½Π½Ρ C12TPP, Π°Π»Π΅ Π½Π΅ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ—-спрямований антиоксидант SkQ1, ΠΏΡ€ΠΈΠ³Π½Ρ–Ρ‡ΡƒΡ” злиття міобластів ΠΏΡ€ΠΈ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ–, ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π½Π΅ Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‡ΠΈ Π½Π° Π΅ΠΊΡΠΏΡ€Π΅ΡΡ–ΡŽ Ρ‚Ρ€ΠΎΠΏΠΎΠ½ΠΈΠ½Π° Π’, Π±Ρ–Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΌ'язової Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ. Висновки. Π’ΠΏΠ»ΠΈΠ² C12TPP ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ частково Π²ΠΈΠΊΠ»ΠΈΠΊΠ°Π½ΠΎ пригнічСнням АЀК, Ρ‚Π°ΠΊ як високі ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— класичного антиоксиданту N-ацСтилцистСїну Ρ‚Π°ΠΊΠΎΠΆ Ρ–Π½Π³Ρ–Π±ΡƒΠ²Π°Π»ΠΈ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΡŽΠ²Π°Π½Π½Ρ міобластів людини.АктивныС Ρ„ΠΎΡ€ΠΌΡ‹ кислорода (АЀК) ΠΌΠΎΠ³ΡƒΡ‚ Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΡƒΡŽ ΡƒΡΡ‚Π°Π»ΠΎΡΡ‚ΡŒ ΠΈ Π°Ρ‚Ρ€ΠΎΡ„ΠΈΡŽ ΠΌΡ‹ΡˆΡ†. АЀК Ρ‚Π°ΠΊΠΆΠ΅ связаны с ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹ΠΌΠΈ дистрофиями. ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ исслСдований ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ влияниС антиоксидантов ΠΈ Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ фосфорилирования Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΌΡ‹ΡˆΡ† Π² Π½ΠΎΡ€ΠΌΠ΅ ΠΈ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ. ЦСль. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ влияниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎ-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… антиоксидантов ΠΈ Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ фосфорилирования Π½Π° Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… миобластов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎ-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ Ρ€Π°Π·ΠΎΠ±Ρ‰ΠΈΡ‚Π΅Π»ΡŒ ΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ фосфорилирования C12TPP, Π½ΠΎ Π½Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎ-Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ антиоксидант SkQ1, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ слияниС миобластов ΠΏΡ€ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅, ΠΏΡ€ΠΈ этом Π½Π΅ влияя Π½Π° ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ Ρ‚Ρ€ΠΎΠΏΠΎΠ½ΠΈΠ½Π° Π’, Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π° ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠΈ. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ВлияниС C12TPP ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ частично Π²Ρ‹Π·Π²Π°Π½ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ АЀК, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ высокиС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ классичСского антиоксиданта N-ацСтилцистСина Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΡƒ миобластов Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°
    corecore