216 research outputs found

    Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy

    Get PDF
    Indium selenide thin films have been grown on p-type gallium selenide single crystal substrates by van der Waals epitaxy. The use of two crucibles in the growth process has resulted in indium selenide films with physical properties closer to these of bulk indium selenide than those prepared by other techniques. The optical properties of the films have been studied by electroabsorption measurements. The band gap and its temperature dependence are very close to those of indium selenide single crystals. The width of the fundamental transition, even if larger than that of the pure single crystal material, decreases monotonously with temperature. Exciton peaks are not observed even at low temperature, which reveals that these layers still contain a large defect concentration. The current–voltage characteristic of indium selenide thin film devices was measured under simulated AM2 conditions. The solar conversion efficiency of these devices is lower than 0.6%. The high concentration of defects reduces the diffusion length of minority carriers down to values round to 0.2 μ[email protected] ; [email protected]

    Defect-induced room temperature ferromagnetism in B-doped ZnO

    Get PDF
    ZnO microrods were grown on glass substrates by the spray pyrolysis method and boron was doped into the ZnO microrods by diffusion. X-ray diffraction results confirmed that the incorporation of B leads to a slight reduction in the deposit texture. Scanning electron microscopy measurements showed that the morphology of the ZnO samples changed from a microrod to nanocrystalline structure with B-doping. Photoluminescence data indicate that B-doping leads to a relative increase of the unstructured green band intensity. Magnetic measurements revealed that B-doped ZnO samples exhibited room temperature ferromagnetism related to defects, in agreement with first principles theoretical calculations

    Nanomechanics of individual aerographite tetrapods

    Get PDF
    R.A., O.L. and K.S. would like to thank the German Research Foundation (DFG) for the financial support under schemes AD 183/17-1 and SFB 986-TP-B1, respectively, and the Graphene FET Flagship. R.M. and D.E. would like to thank for financial support from Latvian Council of Science, no. 549/2012. N.M.P. is supported by the European Research Council (ERC PoC 2015 SILKENE no. 693670) and by the European Commission H2020 under the Graphene Flagship (WP14 ‘Polymer Composites’, no. 696656) and under the FET Proactive (‘Neurofibres’ no. 732344). S.S. acknowledges support from SILKENE

    Computational investigation of diesel nozzle internal flow during the complete injection event

    Full text link
    [EN] Currently, diesel engines are calibrated using more and more complex multiple injection strategies. Under these conditions, the characteristics of the flow exiting the fuel injector are strongly affected by the transient interaction between the needle, the sac volume and the orifices, which are not yet clear. In the current paper, a methodology combining a 1D injector model and 3D-CFD simulations is proposed. First, the characteristics of the nozzle flow have been experimentally assessed in transient conditions by means of injection rate and momentum flux measurements. Later, the 3D-CFD modeling approach has been validated at steady-state fixed lift conditions. Finally, a previously developed 1D injector model has been used to extract the needle lift profiles and transient pressure boundary conditions used for the full-transient 3D-CFD simulations, using adaptive mesh refinement (AMR) strategies to be able to simulate the complete injection rate starting from 1 mu m lift.This work was partly sponsored by "Ministerio de Economia y Competitividad'', of the Spanish Government, in the frame of the Project "Estudio de la interaccion chorro-pared en condiciones realistas de motor'', Reference TRA2015-67679-c2-1-R. The authors would like also to thank the computer resources, technical expertise and assistance provided by Universidad de Valencia in the use of the supercomputer "Tirant''. Mr. Jaramillo's Thesis is funded by "Conselleria d'Educacio, Cultura i Esports'' of Generalitat Valenciana in the frame of the program "Programa VALI + D para investigadores en formacion, Reference ACIF/2015/040.Salvador, FJ.; De La Morena, J.; Bracho Leon, G.; Jaramillo-Císcar, D. (2018). Computational investigation of diesel nozzle internal flow during the complete injection event. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 40(3):153-167. https://doi.org/10.1007/s40430-018-1074-zS153167403Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Policy 64:141–152. https://doi.org/10.1016/j.enpol.2013.05.049Lujan JM, Tormos B, Salvador FJ, Gargar K (2009) Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: preliminary study (I). Biomass Bioenergy 33:941–947. https://doi.org/10.1016/j.biombioe.2009.02.004Pickett LM, Siebers DL (2004) Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combust Flame 138:114–135. https://doi.org/10.1016/j.combustflame.2004.04.006Dec JE (1997) A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE Tech. Pap. 970873Wang X, Huang Z, Zhang W et al (2011) Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Appl Energy 88:1620–1628. https://doi.org/10.1016/j.apenergy.2010.11.035Sayin C, Gumus M, Canakci M (2013) Influence of injector hole number on the performance and emissions of a di diesel engine fueled with biodiesel-diesel fuel blends. Appl Therm Eng 61:121–128. https://doi.org/10.1016/j.applthermaleng.2013.07.038Mohan B, Yang W, Chou SK (2013) Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renew Sustain Energy Rev 28:664–676. https://doi.org/10.1016/j.rser.2013.08.051Payri R, Salvador FJ, Gimeno J, De la Morena J (2011) Influence of injector technology on injection and combustion development, Part 1: hydraulic characterization. Appl Energy 88:1068–1074. https://doi.org/10.1016/j.apenergy.2010.10.012Park SW, Kim JW, Lee CS (2006) Effect of injector type on fuel-air mixture formation of high-speed diesel sprays. Proc Inst Mech Eng D 220:647–659. https://doi.org/10.1243/09544070D20304Moon S, Komada K, Sato K et al (2015) Ultrafast X-ray study of multi-hole GDI injector sprays: effects of nozzle hole length and number on initial spray formation. Exp Therm Fluid Sci 68:68–81. https://doi.org/10.1016/j.expthermflusci.2015.03.027Powell CF, Kastengren AL, Liu Z, Fezzaa K (2010) The effects of diesel injector needle motion on spray structure. J Eng Gas Turbines Power 133:12802. https://doi.org/10.1115/1.4001073Huang W, Moon S, Ohsawa K (2016) Near-nozzle dynamics of diesel spray under varied needle lifts and its prediction using analytical model. Fuel 180:292–300. https://doi.org/10.1016/j.fuel.2016.04.042Sun Z-Y, Li G-X, Chen C et al (2015) Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine. Energy Convers Manag 89:843–861. https://doi.org/10.1016/j.enconman.2014.10.047Devassy BM, Habchi C, Daniel E (2015) Atomization modelling of liquid jets using a two-surface density approach. At Sprays 25:47–80Moon S, Gao Y, Park S et al (2015) Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection. Fuel 150:112–122. https://doi.org/10.1016/j.fuel.2015.01.097Payri R, Salvador FJ, Carreres M, De la Morena J (2016) Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Convers Manag 114:376–391. https://doi.org/10.1016/j.enconman.2016.02.043Plamondon E, Seers P (2014) Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends. Appl Energy 131:411–424. https://doi.org/10.1016/j.apenergy.2014.06.039Postrioti L, Malaguti S, Bosi M et al (2014) Experimental and numerical characterization of a direct solenoid actuation injector for diesel engine applications. Fuel 118:316–328. https://doi.org/10.1016/j.fuel.2013.11.001Desantes JM, Salvador FJ, Lopez JJ, De la Morena J (2011) Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Exp Fluids 50:233–246. https://doi.org/10.1007/s00348-010-0919-8De la Morena J, Neroorkar K, Plazas AH et al (2013) Numerical analysis of the influence of diesel nozzle design on internal flow characteristics for 2-valve diesel engine application. At Sprays 23:97–118. https://doi.org/10.1615/AtomizSpr.2013006361Duke DJ, Schmidt DP, Neroorkar K et al (2013) High-resolution large eddy simulations of cavitating gasoline-ethanol blends. Int J Engine Res 14:578–589. https://doi.org/10.1177/1468087413501824Mitroglou N, McLorn M, Gavaises M et al (2014) Instantaneous and ensemble average cavitation structures in diesel micro-channel flow orifices. Fuel 116:736–742. https://doi.org/10.1016/j.fuel.2013.08.060Wang X, Li K, Su W (2012) Experimental and numerical investigations on internal flow characteristics of diesel nozzle under real fuel injection conditions. Exp Therm Fluid Sci 42:204–211. https://doi.org/10.1016/j.expthermflusci.2012.04.022Sou A, Pratama RH (2016) Effects of asymmetric inflow on cavitation in fuel injector and discharged liquid jet. At Sprays 26:939–959. https://doi.org/10.1615/AtomizSpr.2015013501Xue Q, Battistoni M, Powell CF et al (2015) An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines. Int J Multiph Flow 70:77–88. https://doi.org/10.1016/j.ijmultiphaseflow.2014.11.012Castilla R, Gamez-Montero PJ, Ertrk N et al (2010) Numerical simulation of turbulent flow in the suction chamber of a gearpump using deforming mesh and mesh replacement. Int J Mech Sci 52:1334–1342. https://doi.org/10.1016/j.ijmecsci.2010.06.009Parlak Z, Engin T (2012) Time-dependent CFD and quasi-static analysis of magnetorheological fluid dampers with experimental validation. Int J Mech Sci 64:22–31. https://doi.org/10.1016/j.ijmecsci.2012.08.006Chiatti G, Chiavola O, Palmieri F (2009) Spray modeling for diesel engine performance analysis. SAE Tech Pap 2009-01-0835. https://doi.org/10.4271/2009-01-0835Marcer R, Audiffren C, Viel A, et al (2010) Coupling 1D system AMESim and 3D CFD EOLE models for diesel injection simulation Renault. In: ILASS—Eur. 2010, 23rd Annu. Conf. Liq. At. Spray Syst., pp 1–10Desantes JM, Salvador FJ, Carreres M, Martínez-López J (2014) Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proc Inst Mech Eng D 229:407–423. https://doi.org/10.1177/0954407014542627Battistoni M, Xue Q, Som S (2016) Large-eddy simulation (LES) of spray transients: start and end of injection phenomena. Oil Gas Sci Technol 71:24. https://doi.org/10.2516/ogst/2015024CONVERGE is a trade mark of convergent science. https://convergecfd.comMacian V, Bermúdez V, Payri R, Gimeno J (2003) New technique for determination of internal geometry of a diesel nozzle with the use of silicone methodology. Exp Tech 27:39–43. https://doi.org/10.1111/j.1747-1567.2003.tb00107.xDabiri S, Sirignano WA, Joseph DD (2007) Cavitation in an orifice flow. Phys Fluids 19:72112. https://doi.org/10.1063/1.2750655Mohan B, Yang W, Chou SK (2014) Cavitation in injector nozzle holes—a parametric study. Eng Appl Comput Fluid Mech 8:70–81Salvador FJ, Hoyas S, Novella R, Martinez-Lopez J (2011) Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proc Inst Mech Eng D 225:545–563. https://doi.org/10.1177/09544070JAUTO1569Som S, Longman DE, Ramirez AI, Aggarwal S (2012) Influence of nozzle orifice geometry and fuel properties on flow and cavitation characteristics of a diesel injector. In: Fuel Inject. Automot. Eng., pp 112–126Desantes JM, Salvador FJ, Carreres M, Jaramillo D (2015) Experimental characterization of the thermodynamic properties of diesel fuels over a wide range of pressures and temperatures. SAE Int J Fuels Lubr 8:2015-01-0951. https://doi.org/10.4271/2015-01-0951Bosch W (1966) The fuel rate indicator: a new measuring instrument for display of the characteristics of individual injection. SAE Pap. 660749Payri R, Salvador FJ, Gimeno J, Bracho G (2008) A new methodology for correcting the signal cumulative phenomenon on injection rate measurements. Exp Tech 32:46–49. https://doi.org/10.1111/j.1747-1567.2007.00188.xPayri F, Payri R, Salvador FJ, Martínez-López J (2011) A contribution to the understanding of cavitation effects in diesel injector nozzles through a combined experimental and computational investigation. Comput Fluids 58:88–101. https://doi.org/10.1016/j.compfluid.2012.01.005Lichtarowicz AK, Duggins RK, Markland E (1965) Discharge coefficients for incompressible non-cavitating flow through long orifices. J Mech Eng Sci 7:210–219. https://doi.org/10.1243/JMES_JOUR_1965_007_029_02Lopez JJ, Salvador FJ, De la Garza OA, Arrègle J (2012) Characterization of the pressure losses in a common rail diesel injector. Proc Inst Mech Eng D 226:1697–1706. https://doi.org/10.1177/0954407012447020Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Convers Manag 103:284–299. https://doi.org/10.1016/j.enconman.2015.05.062LMS (2010) Imagine.Lab AMESim v.10. User’s manualPayri R, Salvador FJ, Martí-Aldaraví P, Martínez-López J (2012) Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: detailed injection system model. Energy Convers Manag 54:90–99. https://doi.org/10.1016/j.enconman.2011.10.00

    Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends

    Get PDF
    This paper presents a detailed study on the role of various annealing treatments on organic poly(3-hexylthiophene) and [6]-phenyl-C61-butyric acid methyl ester blends under different experimental conditions. A combination of analytical tools is used to study the alteration of the phase separation, structure and photovoltaic properties of the P3HT:PCBM blend during the annealing process. Results showed that the thermal annealing yields PCBM ‘‘needle-like’’ crystals and that prolonged heat treatment leads to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM crystals. The substrate annealing method demonstrated an optimal morphology by eradicating and suppressing the formation of fullerene clusters across the film, resulting in longer P3HT fibrils with smaller diameter. Improved optical constants, PL quenching and a decrease in the P3HT optical bad-gap were demonstrated for the substrate annealed films due to the limited diffusion of the PCBM molecules. An effective strategy for determining an optimized morphology through substrate annealing treatment is therefore revealed for improved device efficiency.Web of Scienc

    Comparisons between Tethyan Anorthosite-bearing Ophiolites and Archean Anorthosite-bearing Layered Intrusions: Implications for Archean Geodynamic Processes

    Get PDF
    Elucidating the petrogenesis and geodynamic setting(s) of anorthosites in Archean layered intrusions and Tethyan ophiolites has significant implications for crustal evolution and growth throughout Earth history. Archean anorthosite-bearing layered intrusions occur on every continent. Tethyan ophiolites occur in Europe, Africa, and Asia. In this contribution, the field, petrographic, petrological, and geochemical characteristics of 100 Tethyan anorthosite-bearing ophiolites and 155 Archean anorthosite-bearing layered intrusions are compared. Tethyan anorthosite-bearing ophiolites range from Devonian to Paleocene in age, are variably composite, contain anorthosites with highly calcic (An44-100) plagioclase and magmatic amphibole. These ophiolites formed predominantly at convergent plate margins, with some forming in mid-ocean ridge, continental rift, and mantle plume settings. The predominantly convergent plate margin tectonic setting of Tethyan anorthosite-bearing ophiolites is indicated by negative Nb and Ti anomalies and magmatic amphibole. Archean anorthosite-bearing layered intrusions are Eoarchean to Neoarchean in age, have megacrystic anorthosites with highly calcic (An20-100) plagioclase and magmatic amphibole and are interlayered with gabbros and leucogabbros and intrude pillow basalts. These Archean layered intrusions are interpreted to have predominantly formed at convergent plate margins, with the remainder forming in mantle plume, continental rift, oceanic plateau, post-orogenic, anorogenic, mid-ocean ridge, and passive continental margin settings. These layered intrusions predominantly crystallized from hydrous Ca- and Al-rich tholeiitic magmas. The field, petrographic and geochemical similarities between Archean and Tethyan anorthosites indicate that they were produced by similar geodynamic processes mainly in suprasubduction zone settings. We suggest that Archean anorthosite-bearing layered intrusions and spatially associated greenstone belts represent dismembered subduction-related Archean ophiolites

    Echinoderms from the Museum of Zoology from the Universidad de Costa Rica

    Get PDF
    El Museo de Zoología de la Universidad de Costa Rica (MZUCR) se funda en 1966 y alberga la colección de organismos vertebrados e invertebrados más completa de Costa Rica. El MZUCR cuenta actualmente con 24 colec-ciones que contienen más de cinco millones de especíme-nes, y más de 13 000 especies identificadas. Las primeras colecciones datan 1960 e incluyen peces, reptiles, anfibios, poliquetos, crustáceos y equinodermos. Para este último grupo, el MZUCR posee un total de 157 especies, en 1 173 lotes y 4 316 ejemplares. Estas 157 especies representan el 54% del total de especies de equinodermos que posee Costa Rica (293 especies). El resto de especies están repar-tidas en las siguientes instituciones: Academia de la Cien-cias de California (CAS) (4.8%), Instituto Oceanográfico Scripps (SIO) (5.2%), en la Colección Nacional de equino-dermos “Dra. Ma. Elena Caso” de la Universidad Nacional Autónoma de México (ICML-UNAM) (12.7%), Museo de Zoología Comparada de Harvard (MZC) (19.2%), y en el Museo Nacional de Historia Natural del Instituto Smithso-niano (USNM) (35.1%). Es posible que haya material de Costa Rica en el Museo de Historia Natural de Dinamarca (NCD) y en el Museo de Historia Natural de los Ángeles (LACM), sin embargo, no hubo acceso a dichas coleccio-nes. A su vez hay 9.6% de especies que no aparecen en ningún museo, pero están reportadas en la literatura. Con base en esta revisión de colecciones se actualizó el listado taxonómico de equinodermos para Costa Rica que consta de 293 especies, 152 géneros, 75 familias, 30 órdenes y cinco clases. La costa Pacífica de Costa Rica posee 153 especies, seguida por la isla del Coco con 134 y la costa Caribe con 65. Holothuria resultó ser el género más rico con 25 especies.The Museum of Zoology, Universidad de Costa Rica (MZUCR) was founded in 1966 and houses the most complete collection of vertebrates and invertebrates in Costa Rica. The MZUCR currently has 24 collections containing more than five million specimens, and more than 13 000 species. The earliest collections date back to 1960 and include fishes, reptiles, amphibians, polychaetes, crustaceans and echinoderms. For the latter group, the MZUCR has a total of 157 species, in 1 173 lots and 4 316 specimens. These 157 species represent 54% of the total species of echino-derms from Costa Rica. The remaining species are distributed in the following institutions: California Academy of Sciences (CAS) (4.8%), Scripps Oceanographic Institute (SIO) (5.2%), National Echinoderm Collection “Dr. Ma. Elena Caso” from the National Autonomous University of Mexico (ICML-UNAM) (12.7%), the National Museum of Natural History, Smithsonian Institute (USNM) (35.1%), and the Harvard Museum of Comparative Zoology (19.2%). There may be material from Costa Rica in the Natural History Museum of Denmark (NCD) and the Natural History Museum of Los Angeles (LACM), however, there was no access to such collections. There are 9.6% that do not appear in museums, but are reported in the literature. Based on this revision, the taxonomic list of echinoderms for Costa Rica is updated to 293 species, 152 genera, 75 families, 30 orders and 5 classes. The Pacific coast of Costa Rica has 153 species, followed by the Isla del Coco with 134 and the Caribbean coast with 65. Holothuria is the most diverse genus with 25 species.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de BiologíaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Artes y Letras::Museo de la Universidad de Costa Ric
    corecore