57 research outputs found

    Blending using ODE swept surfaces with shape control and C1 continuity

    Get PDF
    Surface blending with tangential continuity is most widely applied in computer aided design, manufacturing systems, and geometric modeling. In this paper, we propose a new blending method to effectively control the shape of blending surfaces, which can also satisfy the blending constraints of tangent continuity exactly. This new blending method is based on the concept of swept surfaces controlled by a vector-valued fourth order ordinary differential equation (ODE). It creates blending surfaces by sweeping a generator along two trimlines and making the generator exactly satisfy the tangential constraints at the trimlines. The shape of blending surfaces is controlled by manipulating the generator with the solution to a vector-valued fourth order ODE. This new blending methods have the following advantages: 1). exact satisfaction of 1C continuous blending boundary constraints, 2). effective shape control of blending surfaces, 3). high computing efficiency due to explicit mathematical representation of blending surfaces, and 4). ability to blend multiple (more than two) primary surfaces

    Histomorphometric analysis of inflammatory response and necrosis in re-implanted central incisor of rats treated with low-level laser therapy

    Get PDF
    Low-level laser therapy is a tool employed in the management of post-operative inflammation process and in the enhancement of reparative process. The aim of the study was to perform histological evaluation of dental and periodontal ligament of rats central upper-left incisor teeth re-implanted and irradiated with low-level laser (InGaAl, 685 nm, 50 J/cm2) 15, 30, and 60 days after re-implantation. Seventy-two male rats had the central upper left incisor removed and kept for 15 min on dry gauze before replantation. Laser was irradiated over the root surface and empty alveolus prior replantation and over surrounding mucosa after the re-implantation. After histological procedures, all slices were analyzed regarding external resorption area and histological aspects. We observed an increase of root resorption (p < 0.05) in the control group compared to the laser group at 15, 30, and 60 days. These results showed that the laser groups developed less root resorption areas than the control group in all experimental periods. Additionally, histological analysis revealed less inflammatory cells and necrotic areas in laser groups

    Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae : effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation

    Get PDF
    The lactose in cheese whey is an interesting substrate for the production of bulk commodities such as bio-ethanol, due to the large amounts of whey surplus generated globally. In this work, we studied the performance of a recombinant Saccharomyces cerevisiae strain expressing the lactose permease and intracellular ß-galactosidase from Kluyveromyces lactis in fermentations of deproteinized concentrated cheese whey powder solutions. Supplementation with 10 g/l of corn steep liquor significantly enhanced whey fermentation, resulting in the production of 7.4% (v/v) ethanol from 150 g/l initial lactose in shake-flask fermentations, with a corresponding productivity of 1.2 g/l/h. The flocculation capacity of the yeast strain enabled stable operation of a repeated-batch process in a 5.5-l air-lift bioreactor, with simple biomass recycling by sedimentation of the yeast flocs. During five consecutive batches, the average ethanol productivity was 0.65 g/l/h and ethanol accumulated up to 8% (v/v) with lactose-toethanol conversion yields over 80% of theoretical. Yeast viability (>97%) and plasmid retention (>84%) remained high throughout the operation, demonstrating the stability and robustness of the strain. In addition, the easy and inexpensive recycle of the yeast biomass for repeated utilization makes this process economically attractive for industrial implementation.Fundação para a Ciência e a Tecnologia (FCT)LACTOGAL-Produtos Alimentares S.A.Companhia Portuguesa de Amidos, S.A

    Two Origins for the Gene Encoding α-Isopropylmalate Synthase in Fungi

    Get PDF
    BACKGROUND: The biosynthesis of leucine is a biochemical pathway common to prokaryotes, plants and fungi, but absent from humans and animals. The pathway is a proposed target for antimicrobial therapy. METHODOLOGY/PRINCIPAL FINDINGS: Here we identified the leuA gene encoding alpha-isopropylmalate synthase in the zygomycete fungus Phycomyces blakesleeanus using a genetic mapping approach with crosses between wild type and leucine auxotrophic strains. To confirm the function of the gene, Phycomyces leuA was used to complement the auxotrophic phenotype exhibited by mutation of the leu3+ gene of the ascomycete fungus Schizosaccharomyces pombe. Phylogenetic analysis revealed that the leuA gene in Phycomyces, other zygomycetes, and the chytrids is more closely related to homologs in plants and photosynthetic bacteria than ascomycetes or basidiomycetes, and suggests that the Dikarya have acquired the gene more recently. CONCLUSIONS/SIGNIFICANCE: The identification of leuA in Phycomyces adds to the growing body of evidence that some primary metabolic pathways or parts of them have arisen multiple times during the evolution of fungi, probably through horizontal gene transfer events

    The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action

    Get PDF
    Background: In recent decades, the prevalence of obesity in children has increased dramatically. This worldwide epidemic has important consequences, including psychiatric, psychological and psychosocial disorders in childhood, and increased risk of developing noncommunicable diseases later in life. Treatment of obesity is difficult, and children with excess weight are likely to become adults with obesity. These trends have led World Health Organization (WHO) member states to endorse a target of no increase in obesity in childhood by 2025. Main body: Estimates of overweight in children aged under 5 years are available jointly from UNICEF, WHO and the World Bank. Country-level estimates of obesity in children aged from 2 to 4 years have been published by the Institute for Health Metrics and Evaluation (IHME). For children aged from 5 to 19, obesity estimates are available from the NCD Risk Factor Collaboration. The global prevalence of overweight in children aged under 5 years has increased modestly, but with heterogeneous trends in low- and middle-income regions, while the prevalence of obesity in children aged from 2 to 4 has increased moderately. For children aged 5 to 19, obesity was relatively rare in 1975, but was much more common in 2016. Conclusions: It is recognised that the key drivers of this epidemic form an obesogenic environment, which includes changing food systems and reduced physical activity. Although cost-effective interventions such as WHO “best buys” have been identified, political will and implementation have so far been limited. There is therefore a need to implement effective programmes and policies in multiple sectors to address overnutrition, undernutrition, mobility and physical activity. To be successful, the obesity epidemic must be a political priority, with these issues addressed both locally and globally. This must involve coordinated work by governments, civil society, private corporations and other key stakeholders
    corecore