217 research outputs found

    Evolution of phytosterols in Chardonnay grape berry skins during last stages of ripening

    Get PDF
    This study presents the results of rapid phytosterols analysis in grape skins during last stages of ripening. The analysis is related to the evolution of sterol content by comparison with ripening degree on two vineyards of Chardonnay grape variety in Burgundy: Meursault ler Cru and Hautes Cotes de Beaune. The characterization of sterols is realized by using combined gas chromatography-mass spectrometry from trimethylsilyl ethers of sterols. After optimization of extraction by azeotropic mixture (chloroform/methanol 2:1 v/v), the analysis allows to identify four sterols in grape skins: beta-sitosterol, campesterol, stigmasterol and lanosterol. In all the samples, beta-sitosterol is the major phytosterol (86 to 89 % of the total detected phytosterols). The evolution of phytosterols content during last stages of ripening shows a similar comportment of β-sitosterol, campesterol and stigmasterol in grape skins: the maturation induces a loss of phytosterols in grape skins. An increase of phytosterol contents occurs at peak maturity and can be related with over-maturation phenomenon. The relationship between phytosterol content in grape skins and S/A ratio indicates a markedly negative correlation

    31P Magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability

    Get PDF
    AbstractWe have analyzed by 31P MRS the relationship between kinetic parameters of phosphocreatine (PCr) recovery and end-of-exercise status under conditions of moderate and large acidosis induced by dynamic exercise. Thirteen healthy subjects performed muscular contractions at 0.47 Hz (low frequency, moderate exercise) and 0.85 Hz (high frequency, heavy exercise). The rate constant of PCr resynthesis (kPCr) varied greatly among subjects (variation coefficients: 43 vs. 57% for LF vs. HF exercises) and protocols (kPCr values: 1.3±0.5 min−1 vs. 0.9±0.5 min−1 for LF vs. HF exercises, P<0.03). The large intersubject variability can be captured into a linear relationship between kPCr, the amount of PCr consumed ([PCr2]) and pH reached at the end of exercise (pHend) (kPCr=−3.3+0.7 pHend-0.03 [PCr2]; P=0.0007; r=0.61). This dual relationship illustrates that mitochondrial activity is affected by end-of-exercise metabolic status and allows reliable comparisons between control, diseased and trained muscles. In contrast to kPCr, the initial rate of PCr recovery and the maximum oxidative capacity were always constant whatever the metabolic conditions of end-of-exercise and can then be additionally used in the identification of dysfunctions in the oxidative metabolic pathway

    Deletion of TRAAK Potassium Channel Affects Brain Metabolism and Protects against Ischemia

    Get PDF
    Cerebral stroke is a worldwide leading cause of disability. The two-pore domain K(+) channels identified as background channels are involved in many functions in brain under physiological and pathological conditions. We addressed the hypothesis that TRAAK, a mechano-gated and lipid-sensitive two-pore domain K(+) channel, is involved in the pathophysiology of brain ischemia. We studied the effects of TRAAK deletion on brain morphology and metabolism under physiological conditions, and during temporary focal cerebral ischemia in Traak(-/-) mice using a combination of in vivo magnetic resonance imaging (MRI) techniques and multinuclear magnetic resonance spectroscopy (MRS) methods. We provide the first in vivo evidence establishing a link between TRAAK and neurometabolism. Under physiological conditions, Traak(-/-) mice showed a particular metabolic phenotype characterized by higher levels of taurine and myo-inositol than Traak(+/+) mice. Upon ischemia, Traak(-/-) mice had a smaller infarcted volume, with lower contribution of cellular edema than Traak(+/+) mice. Moreover, brain microcirculation was less damaged, and brain metabolism and pH were preserved. Our results show that expression of TRAAK strongly influences tissue levels of organic osmolytes. Traak(-/-) mice resilience to cellular edema under ischemia appears related to their physiologically high levels of myo-inositol and of taurine, an aminoacid involved in the modulation of mitochondrial activity and cell death. The beneficial effects of TRAAK deletion designate this channel as a promising pharmacological target for the treatment against stroke

    Magnetic resonance imaging of the neuroprotective effect of xaliproden in rats

    Get PDF
    RATIONALE AND OBJECTIVES: The neurotrophic effect of Xaliproden has been followed using sequential cerebral magnetic resonance imaging (MRI) in rats with vincristine-induced brain lesion as a model of Alzheimer disease. METHODS: Nineteen rats received an intraseptal injection of vincristine on day 0, followed by a daily gavage with either the vehicle (Tween-20 1%) (n = 10) or Xaliproden (10 mg/kg) (n = 9). Eight sham-operated controls received a daily gavage with either the vehicle (n = 4) or Xaliproden (n = 4). Brain MR imaging was performed at 4.7 T on a Biospec 47/30 MR system before surgery then 3, 7, 10, and 14 days after surgery. RESULTS: At day 3 following vincristine injection, an increase in MR signal intensity in the septum was observed on T2-weighted images. This increase was maximal at day 10, and remained stable until day 14. Daily treatment with Xaliproden delayed the appearance of hypersignals until day 7 and reduced by Ca. 50% the magnitude of the increase in signal intensity from day 10. No changes were observed in the hippocampus. CONCLUSION: Quantitative MRI objectifies noninvasively the neuroprotective effect of Xaliproden on rat brain anatomy

    Diffusion-weighted imaging in normal fetal brain maturation

    Get PDF
    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 ± 0.05mm2/s) were higher compared with the cerebellar hemisphere (1.25 ± 0.06mm2/s) and lowest in the pons (1.11 ± 0.05mm2/s). Thalamus and BG showed intermediate values (1.25 ± 0.04mm2/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babie

    Responders to Wide-Pulse, High-Frequency Neuromuscular Electrical Stimulation Show Reduced Metabolic Demand: A 31P-MRS Study in Humans.

    Get PDF
    Conventional (CONV) neuromuscular electrical stimulation (NMES) (i.e., short pulse duration, low frequencies) induces a higher energetic response as compared to voluntary contractions (VOL). In contrast, wide-pulse, high-frequency (WPHF) NMES might elicit-at least in some subjects (i.e., responders)-a different motor unit recruitment compared to CONV that resembles the physiological muscle activation pattern of VOL. We therefore hypothesized that for these responder subjects, the metabolic demand of WPHF would be lower than CONV and comparable to VOL. 18 healthy subjects performed isometric plantar flexions at 10% of their maximal voluntary contraction force for CONV (25 Hz, 0.05 ms), WPHF (100 Hz, 1 ms) and VOL protocols. For each protocol, force time integral (FTI) was quantified and subjects were classified as responders and non-responders to WPHF based on k-means clustering analysis. Furthermore, a fatigue index based on FTI loss at the end of each protocol compared with the beginning of the protocol was calculated. Phosphocreatine depletion (ΔPCr) was assessed using 31P magnetic resonance spectroscopy. Responders developed four times higher FTI's during WPHF (99 ± 37 ×103 N.s) than non-responders (26 ± 12 ×103 N.s). For both responders and non-responders, CONV was metabolically more demanding than VOL when ΔPCr was expressed relative to the FTI. Only for the responder group, the ∆PCr/FTI ratio of WPHF (0.74 ± 0.19 M/N.s) was significantly lower compared to CONV (1.48 ± 0.46 M/N.s) but similar to VOL (0.65 ± 0.21 M/N.s). Moreover, the fatigue index was not different between WPHF (-16%) and CONV (-25%) for the responders. WPHF could therefore be considered as the less demanding NMES modality-at least in this subgroup of subjects-by possibly exhibiting a muscle activation pattern similar to VOL contractions

    Change of dopamine receptor mRNA expression in lymphocyte of schizophrenic patients

    Get PDF
    BACKGROUND: Though the dysfunction of central dopaminergic system has been proposed, the etiology or pathogenesis of schizophrenia is still uncertain partly due to limited accessibility to dopamine receptor. The purpose of this study was to define whether or not the easily accessible dopamine receptors of peripheral lymphocytes can be the peripheral markers of schizophrenia. RESULTS: 44 drug-medicated schizophrenics for more than 3 years, 28 drug-free schizophrenics for more than 3 months, 15 drug-naïve schizophrenic patients, and 31 healthy persons were enrolled. Sequential reverse transcription and quantitative polymerase chain reaction of the mRNA were used to investigate the expression of D3 and D5 dopamine receptors in peripheral lymphocytes. The gene expression of dopamine receptors was compared in each group. After taking antipsychotics in drug-free and drug-naïve patients, the dopamine receptors of peripheral lymphocytes were sequentially studied 2nd week and 8th week after medication. In drug-free schizophrenics, D3 dopamine receptor mRNA expression of peripheral lymphocytes significantly increased compared to that of controls and drug-medicated schizophrenics, and D5 dopamine receptor mRNA expression increased compared to that of drug-medicated schizophrenics. After taking antipsychotics, mRNA of dopamine receptors peaked at 2(nd) week, after which it decreases but the level was above baseline one at 8(th) week. Drug-free and drug-naïve patients were divided into two groups according to dopamine receptor expression before medications, and the group of patients with increased dopamine receptor expression had more severe psychiatric symptoms. CONCLUSIONS: These results reveal that the molecular biologically-determined dopamine receptors of peripheral lymphocytes are reactive, and that increased expression of dopamine receptor in peripheral lymphocyte has possible clinical significance for subgrouping of schizophrenis
    corecore