70 research outputs found
Gravity-mode period spacings as seismic diagnostic for a sample of gamma Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy
Gamma Doradus stars (hereafter gamma Dor stars) are gravity-mode pulsators of
spectral type A or F. Such modes probe the deep stellar interior, offering a
detailed fingerprint of their structure. Four-year high-precision space-based
Kepler photometry of gamma Dor stars has become available, allowing us to study
these stars with unprecedented detail. We selected, analysed, and characterized
a sample of 67 gamma Dor stars for which we have Kepler observations available.
For all the targets in the sample we assembled high-resolution spectroscopy to
confirm their F-type nature. We found fourteen binaries, among which four
single-lined binaries, five double-lined binaries, two triple systems and three
binaries with no detected radial velocity variations. We estimated the orbital
parameters whenever possible. For the single stars and the single-lined
binaries, fundamental parameter values were determined from spectroscopy. We
searched for period spacing patterns in the photometric data and identified
this diagnostic for 50 of the stars in the sample, 46 of which are single stars
or single-lined binaries. We found a strong correlation between the
spectroscopic vsini and the period spacing values, confirming the influence of
rotation on gamma Dor-type pulsations as predicted by theory. We also found
relations between the dominant g-mode frequency, the longest pulsation period
detected in series of prograde modes, vsini, and log Teff.Comment: 61 pages, 61 figures, 6 tables, accepted for publication in ApJ
A search for pulsations in the HgMn star HD 45975 with CoRoT photometry and ground-based spectroscopy
The existence of pulsations in HgMn stars is still being debated. To provide
the first unambiguous observational detection of pulsations in this class of
chemically peculiar objects, the bright star HD 45975 was monitored for nearly
two months by the CoRoT satellite. Independent analyses of the light curve
provides evidence of monoperiodic variations with a frequency of 0.7572 c/d and
a peak-to-peak amplitude of ~2800 ppm. Multisite, ground-based spectroscopic
observations overlapping the CoRoT observations show the star to be a
long-period, single-lined binary. Furthermore, with the notable exception of
mercury, they reveal the same periodicity as in photometry in the line moments
of chemical species exhibiting strong overabundances (e.g., Mn and Y). In
contrast, lines of other elements do not show significant variations. As found
in other HgMn stars, the pattern of variability consists in an absorption bump
moving redwards across the line profiles. We argue that the photometric and
spectroscopic changes are more consistent with an interpretation in terms of
rotational modulation of spots at the stellar surface. In this framework, the
existence of pulsations producing photometric variations above the ~50 ppm
level is unlikely in HD 45975. This provides strong constraints on the
excitation/damping of pulsation modes in this HgMn star.Comment: Accepted for publication in A&A, 14 pages, 15 colour figures (revised
version after language editing
Time resolved spectroscopy of BD+46 442: gas streams and jet creation in a newly discovered evolved binary with a disk
Previous studies have shown that many post-AGB stars with dusty disks are
associated with single-lined binary stars. To verify the binarity hypothesis on
a larger sample, we started a high-resolution spectral monitoring of about 40
field giants, whose binarity was suspected based on either a light curve, an
infrared excess, or a peculiar chemical composition. Here we report on the
discovery of the periodic RV variations in BD+46 442, a high-latitude F giant
with a disk. We interpret the variations due to the motion around a faint
companion, and deduce the following orbital parameters: Porb = 140.77 d, e =
0.083, asini=0.31 AU. We find it to be a moderately metal-poor star
([M/H]=-0.7) without a strong depletion pattern in the photospheric abundances.
Interestingly, many lines show periodic changes with the orbital phase: Halpha
switches between a double-peak emission and a PCyg-like profiles, while strong
metal lines appear split during the maximum redshift. Similar effects are
likely visible in the spectra of other post-AGB binaries, but their regularity
is not always realized due to sporadic observations. We propose that these
features result from an ongoing mass transfer from the evolved giant to the
companion. In particular, the blue-shifted absorption in Halpha, which occurs
only at superior conjunction, may result from a jet originating in the
accretion disk around the companion and seen in absorption towards the luminous
primary.Comment: 16 pages, accepted in A&
Solid confirmation of the broad DIB around 864.8 nm using stacked GaiaâRVS spectra
Context. Studies of the correlation between different diffuse interstellar bands (DIBs) are important for exploring their origins. However, the GaiaâRVS spectral window between 846 and 870 nm contains few DIBs, the strong DIB at 862 nm being the only convincingly confirmed one. /
Aims. Here we attempt to confirm the existence of a broad DIB around 864.8 nm and estimate its characteristics using the stacked GaiaâRVS spectra of a large number of stars. We study the correlations between the two DIBs at 862 nm (λ862) and 864.8 nm (λ864.8), as well as the interstellar extinction. /
Methods. We obtained spectra of the interstellar medium (ISM) absorption by subtracting the stellar components using templates constructed from real spectra at high Galactic latitudes with low extinctions. We then stacked the ISM spectra in Galactic coordinates (â,ââb) â pixelized by the HEALPix scheme â to measure the DIBs. The stacked spectrum is modeled by the profiles of the two DIBs, Gaussian for λ862 and Lorentzian for λ864.8, and a linear continuum. We report the fitted central depth (CD), central wavelength, equivalent width (EW), and their uncertainties for the two DIBs. /
Results. We obtain 8458 stacked spectra in total, of which 1103 (13%) have reliable fitting results after applying numerous conservative filters. This work is the first of its kind to fit and measure λ862 and λ864.8 simultaneously in cool-star spectra. Based on these measurements, we find that the EWs and CDs of λ862 and λ864.8 are well correlated with each other, with Pearson coefficients (rp) of 0.78 and 0.87, respectively. The full width at half maximum (FWHM) of λ864.8 is estimated as 1.62â
屉
0.33 nm which compares to 0.55â
屉
0.06 nm for λ862. We also measure the vacuum rest-frame wavelength of λ864.8 to be λ0â=â864.53â
屉
0.14 nm, smaller than previous estimates. /
Conclusions. We find solid confirmation of the existence of the DIB around 864.8 nm based on an exploration of its correlation with λ862 and estimation of its FWHM. The DIB λ864.8 is very broad and shallow. That at λ862 correlates better with E(BPâ
ââ
RP) than λ864.8. The profiles of the two DIBs could strongly overlap with each other, which contributes to the skew of the λ862 profile
GAUDI: a preparatory archive for the COROT mission
The GAUDI database (Ground-based Asteroseismology Uniform Database Interface,
http://sdc.laeff.esa.es/gaudi/) is a preparatory archive for the COROT
(COnvection, ROtation and planetary Transits,
http://www.astrsp-mrs.fr/projets/corot/) mission developed at LAEFF (Laboratory
for Space Astrophysics and Theoretical Physics, http://www.laeff.esa.es). Its
intention is to make the ground-based observations obtained in the preparation
of the asteroseismology programme available in a simple and efficient way. It
contains spectroscopic and photometric data together with inferred physical
parameters for more than 1500 objects gathered since January 1998 in 6 years of
observational campaigns. In this paper, the main functionalities and
characteristics of the system are described. The observations have been
collected at ESO-La Silla, Telescopio Nazionale Galileo, Observatoire de
Haute-Provence, South African Astronomical Observatory, Tautenberg Observatory
and Sierra Nevada Observatory.Comment: 12 pages, 3 figures (quality degraded). Accepted for publication in
The Astronomical Journa
Gaia Data Release 3: Processing and validation of BP/RP low-resolution spectral data
(Abridged) Blue (BP) and Red (RP) Photometer low-resolution spectral data is
one of the exciting new products in Gaia Data Release 3 (Gaia DR3). We
calibrate about 65 billion individual transit spectra onto the same mean BP/RP
instrument through a series of calibration steps, including background
subtraction, calibration of the CCD geometry and an iterative procedure for the
calibration of CCD efficiency as well as variations of the line-spread function
and dispersion across the focal plane and in time. The calibrated transit
spectra are then combined for each source in terms of an expansion into
continuous basis functions. Time-averaged mean spectra covering the optical to
near-infrared wavelength range [330, 1050] nm are published for approximately
220 million objects. Most of these are brighter than G = 17.65 but some BP/RP
spectra are published for sources down to G = 21.43. Their signal- to-noise
ratio varies significantly over the wavelength range covered and with magnitude
and colour of the observed objects, with sources around G = 15 having S/N above
100 in some wavelength ranges. The top-quality BP/RP spectra are achieved for
sources with magnitudes 9 < G < 12, having S/N reaching 1000 in the central
part of the RP wavelength range. Scientific validation suggests that the
internal calibration was generally successful. However, there is some evidence
for imperfect calibrations at the bright end G < 11, where calibrated BP/RP
spectra can exhibit systematic flux variations that exceed their estimated flux
uncertainties. We also report that due to long-range noise correlations, BP/RP
spectra can exhibit wiggles when sampled in pseudo-wavelength.Comment: Submitted to A&
The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products
The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to
obtain astrophysical parameters and elemental abundances for 100,000 stars,
including large representative samples of the stellar populations in the
Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We
provide internally consistent results calibrated on benchmark stars and star
clusters, extending across a very wide range of abundances and ages. This
provides a legacy data set of intrinsic value, and equally a large wide-ranging
dataset that is of value for homogenisation of other and future stellar surveys
and Gaia's astrophysical parameters. This article provides an overview of the
survey methodology, the scientific aims, and the implementation, including a
description of the data processing for the GIRAFFE spectra. A companion paper
(arXiv:2206.02901) introduces the survey results. Gaia-ESO aspires to quantify
both random and systematic contributions to measurement uncertainties. Thus all
available spectroscopic analysis techniques are utilised, each spectrum being
analysed by up to several different analysis pipelines, with considerable
effort being made to homogenise and calibrate the resulting parameters. We
describe here the sequence of activities up to delivery of processed data
products to the ESO Science Archive Facility for open use. The Gaia-ESO Survey
obtained 202,000 spectra of 115,000 stars using 340 allocated VLT nights
between December 2011 and January 2018 from GIRAFFE and UVES. The full
consistently reduced final data set of spectra was released through the ESO
Science Archive Facility in late 2020, with the full astrophysical parameters
sets following in 2022
Pulsations in main sequence OBAF-type stars
CONTEXT: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators (Mââ„ââ1.3âMâ) of spectral types O, B, A, or F, known as ÎČ Cep, slowly pulsating B (SPB), ÎŽ Sct, and Îł Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. AIMS: We investigate the extent to which the sparse Gaia DR3 data can be used to detect OBAF-type pulsators and discriminate them from other types of variables. We aim to probe the empirical instability strips and compare them with theoretical predictions. The most populated variability class is that of the ÎŽ Sct variables. For these stars, we aim to confirm their empirical period-luminosity (PL) relation, and verify the relation between their oscillation amplitude and rotation. METHODS: All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the v sin i data were taken from the Gaia DR3 esphs tables. The ÎŽâSct PL relation was derived using the same photometric parallax method as the one recently used to establish the PL relation for classical Cepheids using Gaia data. RESULTS: We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell (HR) diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive periodâluminosity relation for ÎŽ Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. We demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of ÎŽ Sct stars. CONCLUSIONS: The Gaia DR3 time-series photometry already allows for the detection of the dominant (non-)radial oscillation mode in about 100 000 intermediate- and high-mass dwarfs across the entire sky. This detection capability will increase as the time series becomes longer, allowing the additional delivery of frequencies and amplitudes of secondary pulsation modes
Gaia Data Release 3: Mapping the asymmetric disc of the Milky Way
With the most recent Gaia data release the number of sources with complete 6D
phase space information (position and velocity) has increased to well over 33
million stars, while stellar astrophysical parameters are provided for more
than 470 million sources, in addition to the identification of over 11 million
variable stars. Using the astrophysical parameters and variability
classifications provided in Gaia DR3, we select various stellar populations to
explore and identify non-axisymmetric features in the disc of the Milky Way in
both configuration and velocity space. Using more about 580 thousand sources
identified as hot OB stars, together with 988 known open clusters younger than
100 million years, we map the spiral structure associated with star formation
4-5 kpc from the Sun. We select over 2800 Classical Cepheids younger than 200
million years, which show spiral features extending as far as 10 kpc from the
Sun in the outer disc. We also identify more than 8.7 million sources on the
red giant branch (RGB), of which 5.7 million have line-of-sight velocities,
allowing the velocity field of the Milky Way to be mapped as far as 8 kpc from
the Sun, including the inner disc. The spiral structure revealed by the young
populations is consistent with recent results using Gaia EDR3 astrometry and
source lists based on near infrared photometry, showing the Local (Orion) arm
to be at least 8 kpc long, and an outer arm consistent with what is seen in HI
surveys, which seems to be a continuation of the Perseus arm into the third
quadrant. Meanwhile, the subset of RGB stars with velocities clearly reveals
the large scale kinematic signature of the bar in the inner disc, as well as
evidence of streaming motions in the outer disc that might be associated with
spiral arms or bar resonances. (abridged
- âŠ