15,182 research outputs found

    How was the Hubble sequence 6 Gyrs ago?

    Get PDF
    The way galaxies assemble their mass to form the well-defined Hubble sequence is amongst the most debated topic in modern cosmology. One difficulty is to link distant galaxies to those at present epoch. We aim at establishing how were the galaxies of the Hubble sequence, 6 Gyrs ago. We intend to derive a past Hubble sequence that can be causally linked to the present-day one. We selected samples of nearby galaxies from the SDSS and of distant galaxies from the GOODS survey. We verified that each sample is representative of galaxies. We further showed that the observational conditions necessary to retrieve their morphological classification are similar in an unbiased way. Morphological analysis has been done in an identical way for all galaxies in the two samples. We found an absence of number evolution for elliptical and lenticular galaxies, which strikingly contrasts with the strong evolution of spiral and peculiar galaxies. Spiral galaxies were 2.3 times less abundant in the past, that is exactly compensated by the strong decrease by a factor 5 of peculiar galaxies. It strongly suggests that more than half of the present-day spirals had peculiar morphologies, 6 Gyrs ago, and this has to be accounted by any scenario of galactic disk evolution and formation. The past Hubble sequence can be used to test these scenarios as well as to test evolution of fundamental planes for spirals and bulges.Comment: Version accepted by Astronomy and Astrophysics, October 21 2009. Including low resolution images. 11 pages, 8 figure

    Sequential Quantum Cloning

    Get PDF
    Not all unitary operations upon a set of qubits can be implemented by sequential interactions between each qubit and an ancillary system. We analyze the specific case of sequential quantum cloning 1->M and prove that the minimal dimension D of the ancilla grows linearly with the number of clones M. In particular, we obtain D = 2M for symmetric universal quantum cloning and D = M+1 for symmetric phase-covariant cloning. Furthermore, we provide a recipe for the required ancilla-qubit interactions in each step of the sequential procedure for both cases.Comment: 4 pages, no figures. New version with changes. Accepted in Physical Review Letter

    Theory of spin, electronic and transport properties of the lateral triple quantum dot molecule in a magnetic field

    Full text link
    We present a theory of spin, electronic and transport properties of a few-electron lateral triangular triple quantum dot molecule in a magnetic field. Our theory is based on a generalization of a Hubbard model and the Linear Combination of Harmonic Orbitals combined with Configuration Interaction method (LCHO-CI) for arbitrary magnetic fields. The few-particle spectra obtained as a function of the magnetic field exhibit Aharonov-Bohm oscillations. As a result, by changing the magnetic field it is possible to engineer the degeneracies of single-particle levels, and thus control the total spin of the many-electron system. For the triple dot with two and four electrons we find oscillations of total spin due to the singlet-triplet transitions occurring periodically in the magnetic field. In the three-electron system we find a transition from a magnetically frustrated to the spin-polarized state. We discuss the impact of these phase transitions on the addition spectrum and the spin blockade of the lateral triple quantum dot molecule.Comment: 30 pages (one column), 9 figure

    Anomalous U(1)_A and Electroweak Symmetry Breaking

    Get PDF
    We suggest a new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U(1)_A gauge symmetry, which naturally arises in the four dimensional superstring theory, and heavily relies on the value of the corresponding Fayet-Illiopoulos \xi-term.Comment: Latex, 11 pages, discussions and references adde

    Time-of-Arrival States

    Get PDF
    Although one can show formally that a time-of-arrival operator cannot exist, one can modify the low momentum behaviour of the operator slightly so that it is self-adjoint. We show that such a modification results in the difficulty that the eigenstates are drastically altered. In an eigenstate of the modified time-of-arrival operator, the particle, at the predicted time-of-arrival, is found far away from the point of arrival with probability 1/2.Comment: 15 pages, 2 figure

    Enhanced Demand and Capacity Balancing based on Alternative Trajectory Options and Traffic Volume Hotspot Detection

    Get PDF
    Nowadays, regulations in Europe are applied at traffic volume (TV) level consisting in a reference location, i.e. a sector or an airport, and in some traffic flows, which act as directional traffic filters. This paper presents an enhanced demand and capacity balance (EDCB) formulation based on constrained capacities at traffic volume level. In addition, this approach considers alternative trajectories in order to capture the user driven preferences under the trajectory based operations scope. In fact, these alternative trajectories are assumed to be generated by the airspace users for those flights that cross regulated traffic volumes, where the demand is above the capacity. For every regulated trajectory the network manager requests two additional alternative trajectories to the airspace users, one for avoiding the regulated traffic volumes laterally and another for avoiding it vertically. This paper considers that the network manager allows more flexibility for the new alternative trajectories by removing restrictions in the Route Availability Document (RAD). All the regulated trajectories (and their alternatives) are considered together by the EDCB model in order to perform a centralised optimisation minimising the the cost deviation with respect to the initial traffic situation, considering fuel consumption, route charges and cost of delay. The EDCB model, based on Mixed-Integer Linear Programming (MILP), manages to balance the network applying ground delay, using alternative trajectories or both. A full day scenario over the ECAC area is simulated. The regulated traffic volumes are identified using historical data (based on 28th July of 2016) and the results show that the EDCB could reduce the minutes of delay by 70%. The cost of the regulations is reduced by 11.7%, due to the reduction of the delay, but also because of the savings in terms of fuel and route charges derived from alternative trajectories
    corecore