243 research outputs found

    Geoeffectiveness and efficiency of CIR, Sheath and ICME in generation of magnetic storms

    Full text link
    We investigate relative role of various types of solar wind streams in generation of magnetic storms. On the basis of the OMNI data of interplanetary measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with Dst < -50 nT and their interplanetary sources: corotating interaction regions (CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and compression regions Sheath before both types of ICME. For various types of solar wind we study following relative characteristics: occurrence rate; mass, momentum, energy and magnetic fluxes; probability of generation of magnetic storm (geoeffectiveness) and efficiency of process of this generation. Obtained results show that despite magnetic clouds have lower occurrence rate and lower efficiency than CIR and Sheath they play an essential role in generation of magnetic storms due to higher geoeffectiveness of storm generation (i.e higher probability to contain large and long-term southward IMF Bz component).Comment: 23 pages, 4 figures, 3 tables, submitted to JGR special issue "Response of Geospace to High-Speed Streams

    Testing the necessity of transient spikes in the storm time ring current drivers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95070/1/jgra20908.pd

    Recovery phase of magnetic storms induced by different interplanetary drivers

    Full text link
    Statistical analysis of Dst behaviour during recovery phase of magnetic storms induced by different types of interplanetary drivers is made on the basis of OMNI data in period 1976-2000. We study storms induced by ICMEs (including magnetic clouds (MC) and Ejecta) and both types of compressed regions: corotating interaction regions (CIR) and Sheaths. The shortest, moderate and longest durations of recovery phase are observed in ICME-, CIR-, and Sheath-induced storms, respectively. Recovery phases of strong (Dstmin<100Dst_{min} < -100 nT) magnetic storms are well approximated by hyperbolic functions Dst(t)=a/(1+t/τh)Dst(t)= a/(1+t/\tau_h) with constant τh\tau_h times for all types of drivers while for moderate (100<Dstmin<50-100 < Dst_{min} < -50 nT) storms DstDst profile can not be approximated by hyperbolic function with constant τh\tau_h because hyperbolic time τh\tau_h increases with increasing time of recovery phase. Relation between duration and value DstminDst_{min} for storms induced by ICME and Sheath has 2 parts: DstminDst_{min} and duration correlate at small durations while they anticorrelate at large durations.Comment: 18 pages, 4 figures, 2 tables, submitted to JGR special issue "Response of Geospace to High-Speed Streams

    Adsorption of benzene on Si(100) from first principles

    Full text link
    Adsorption of benzene on the Si(100) surface is studied from first principles. We find that the most stable configuration is a tetra-σ\sigma-bonded structure characterized by one C-C double bond and four C-Si bonds. A similar structure, obtained by rotating the benzene molecule by 90 degrees, lies slightly higher in energy. However, rather narrow wells on the potential energy surface characterize these adsorption configurations. A benzene molecule impinging on the Si surface is most likely to be adsorbed in one of three different di-σ\sigma-bonded, metastable structures, characterized by two C-Si bonds, and eventually converts into the lowest-energy configurations. These results are consistent with recent experiments.Comment: 4 pages, RevTex, 2 PostScript gzipped figure

    The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae

    Get PDF
    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria

    The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event

    Full text link
    We investigate multi-spacecraft observations of the January 17, 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et al., 2010) including perpendicular diffusion in the interplanetary medium have been applied, respectively. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun we favor a scenario with strong perpendicular transport in the interplanetary medium as explanation for the observations.Comment: The final publication is available at http://www.springerlink.co

    Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING

    Get PDF
    Wild peppers (Capsicum spp.) are either annual or perennial in their native habitat and their shoot architecture is dictated by their sympodial growth habit. To study shoot architecture in pepper, sympodial development is described in wild type and in the classical recessive fasciculate (fa) mutation. The basic sympodial unit in wild-type pepper comprises two leaves and a single terminal flower. fasciculate plants are characterized by the formation of floral clusters separated by short internodes and miniature leaves and by early flowering. Developmental analysis of these clusters revealed shorter sympodial units and, often, precocious termination prior to sympodial leaf formation. fa was mapped to pepper chromosome 6, in a region corresponding to the tomato SELF-PRUNING (SP) locus, the homologue of TFL1 of Arabidopsis. Sequence comparison between wild-type and fa plants revealed a duplication of the second exon in the mutants' orthologue of SP, leading to the formation of a premature stop codon. Ectopic expression of FASCICULATE complemented the Arabidopsis tfl1 mutant plants and as expected, stimulated late flowering. In agreement with the major effect of FASCICULATE imposed on sympodial development, the gene transcripts were localized to the centre of sympodial shoots but could not be detected in the primary shoot. The wide range of pleiotropic effects on plant architecture mediated by a single ‘flowering’ gene, suggests that it is used to co-ordinate many developmental events, and thus may underlie some of the widespread variation in the Solanaceae shoot architecture

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc
    corecore