331 research outputs found

    Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging

    Get PDF
    Purpose: Trabecular bone score (TBS) is a grey-level textural measurement acquired from dual-energy X-ray absorptiometry lumbar spine images and is a validated index of bone microarchitecture. In 2015, a Working Group of the European Society on Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) published a review of the TBS literature, concluding that TBS predicts hip and major osteoporotic fracture, at least partly independent of bone mineral density (BMD) and clinical risk factors. It was also concluded that TBS is potentially amenable to change as a result of pharmacological therapy. Further evidence on the utility of TBS has since accumulated in both primary and secondary osteoporosis, and the introduction of FRAX and BMD T-score adjustment for TBS has accelerated adoption. This position paper therefore presents a review of the updated scientific literature and provides expert consensus statements and corresponding operational guidelines for the use of TBS. Methods: An Expert Working Group was convened by the ESCEO and a systematic review of the evidence undertaken, with defined search strategies for four key topics with respect to the potential use of TBS: (1) fracture prediction in men and women; (2) initiating and monitoring treatment in postmenopausal osteoporosis; (3) fracture prediction in secondary osteoporosis; and (4) treatment monitoring in secondary osteoporosis. Statements to guide the clinical use of TBS were derived from the review and graded by consensus using the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) approach. Results: A total of 96 articles were reviewed and included data on the use of TBS for fracture prediction in men and women, from over 20 countries. The updated evidence shows that TBS enhances fracture risk prediction in both primary and secondary osteoporosis, and can, when taken with BMD and clinical risk factors, inform treatment initiation and the choice of antiosteoporosis treatment. Evidence also indicates that TBS provides useful adjunctive information in monitoring treatment with long-term denosumab and anabolic agents. All expert consensus statements were voted as strongly recommended. Conclusion: The addition of TBS assessment to FRAX and/or BMD enhances fracture risk prediction in primary and secondary osteoporosis, adding useful information for treatment decision-making and monitoring. The expert consensus statements provided in this paper can be used to guide the integration of TBS in clinical practice for the assessment and management of osteoporosis. An example of an operational approach is provided in the appendix. Summary: This position paper presents an up-to-date review of the evidence base, synthesised through expert consensus statements, which informs the implementation of Trabecular Bone Score in clinical practice

    Dissipation and fluctuations in nanoelectromechanical systems based on carbon nanotubes

    Full text link
    Tribological characteristics of nanotube-based nanoelectromechanical systems (NEMS) exemplified by a gigahertz oscillator are studied. Various factors that influence the tribological properties of the nanotube-based NEMS are quantitatively analyzed with the use of molecular dynamics calculations of the quality factor (Q-factor) of the gigahertz oscillator. We demonstrate that commensurability of the nanotube walls can increase the dissipation rate, while the structure of the wall ends and the nanotube length do not influence the Q-factor. It is shown that the dissipation rate depends on the interwall distance and the way of fixation of the outer wall and is significant in the case of a poor fixation for the nanotubes with a large interwall distance. Defects are found to strongly decrease the Q-factor due to the excitation of low-frequency vibrational modes. No universal correlation between the static friction forces and the energy dissipation rate is established. We propose an explanation of the obtained results on the basis of the classical theory of vibrational-translational relaxation. Significant thermodynamics fluctuations are revealed in the gigahertz oscillator by molecular dynamics simulations and analyzed in the framework of the fluctuation-dissipation theorem. Possibility of designing the NEMS with a desirable Q-factor and their applications are discussed on the basis of the above results.Comment: 32 pages, 7 figure

    ESTIMATING GENOME-WIDE COPY NUMBER USING ALLELE SPECIFIC MIXTURE MODELS

    Get PDF
    Genomic changes such as copy number alterations are thought to be one of the major underlying causes of human phenotypic variation among normal and disease subjects [23,11,25,26,5,4,7,18]. These include chromosomal regions with so-called copy number alterations: instead of the expected two copies, a section of the chromosome for a particular individual may have zero copies (homozygous deletion), one copy (hemizygous deletions), or more than two copies (amplifications). The canonical example is Down syndrome which is caused by an extra copy of chromosome 21. Identification of such abnormalities in smaller regions has been of great interest, because it is believed to be an underlying cause of cancer. More than one decade ago comparative genomic hybridization (CGH)technology was developed to detect copy number changes in a high-throughput fashion. However, this technology only provides a 10 MB resolution which limits the ability to detect copy number alterations spanning small regions. It is widely believed that a copy number alteration as small as one base can have significant downstream effects, thus microarray manufacturers have developed technologies that provide much higher resolution. Unfortunately, strong probe effects and variation introduced by sample preparation procedures have made single-point copy number estimates too imprecise to be useful. CGH arrays use a two-color hybridization, usually comparing a sample of interest to a reference sample, which to some degree removes the probe effect. However, the resolution is not nearly high enough to provide single-point copy number estimates. Various groups have proposed statistical procedures that pool data from neighboring locations to successfully improve precision. However, these procedure need to average across relatively large regions to work effectively thus greatly reducing the resolution. Recently, regression-type models that account for probe-effect have been proposed and appear to improve accuracy as well as precision. In this paper, we propose a mixture model solution specifically designed for single-point estimation, that provides various advantages over the existing methodology. We use a 314 sample database, constructed with public datasets, to motivate and fit models for the conditional distribution of the observed intensities given allele specific copy numbers. With the estimated models in place we can compute posterior probabilities that provide a useful prediction rule as well as a confidence measure for each call. Software to implement this procedure will be available in the Bioconductor oligo packagehttp://www.bioconductor.org)

    Friction phenomena and their impact on the shear behaviour of granular material

    Get PDF
    In the discrete element simulation of granular materials, the modelling of contacts is crucial for the prediction of the macroscopic material behaviour. From the tribological point of view, friction at contacts needs to be modelled carefully, as it depends on several factors, e.g. contact normal load or temperature to name only two. In discrete element method (DEM) simulations the usage of Coulomb’s law of friction is state of the art in modelling particle–particle contacts. Usually in Coulomb’s law, for all contacts only one constant coefficient of friction is used, which needs to reflect all tribological effects. Thus, whenever one of the influence factors of friction varies over a wide range, it can be expected that the usage of only one constant coefficient of friction in Coulomb’s law is an oversimplification of reality. For certain materials, e.g. steel, it is known that a dependency of the coefficient of friction on the contact normal load exists. A more tribological tangential contact law is implemented in DEM, where the interparticle friction coefficient depends on the averaged normal stress in the contact. Simulations of direct shear tests are conducted, using steel spheres of different size distributions. The strong influence of interparticle friction on the bulk friction is shown via a variation of the constant interparticle friction coefficient. Simulations with constant and stress-dependent interparticle friction are compared. For the stress-dependent interparticle friction, a normal stress dependency of the bulk friction is seen. In the literature, measurements of different granular materials and small normal loads also show a stress dependency of the bulk friction coefficient. With increasing applied normal stress, the bulk friction coefficient reduces both in the experiments and in the simulations

    Atypical presentation of colon adenocarcinoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Adenocarcinoma of the colon is the most common histopathological type of colorectal cancer. In Western Europe and the United States, it is the third most common type and accounts for 98% of cancers of the large intestine. In Uganda, as elsewhere in Africa, the majority of patients are elderly (at least 60 years old). However, more recently, it has been observed that younger patients (less than 40 years of age) are presenting with the disease. There is also an increase in its incidence and most patients present late, possibly because of the lack of a comprehensive national screening and preventive health-care program. We describe the clinicopathological features of colorectal carcinoma in the case of a young man in Kampala, Uganda.</p> <p>Case presentation</p> <p>A 27-year-old man from Kampala, Uganda, presented with gross abdominal distension, progressive loss of weight, and fever. He was initially screened for tuberculosis, hepatitis, and lymphoma, and human immunodeficiency virus/acquired immunodeficiency syndrome infection. After a battery of tests, a diagnosis of colorectal carcinoma was finally established with hematoxylin and eosin staining of a cell block made from the sediment of a liter of cytospun ascitic fluid, which showed atypical glands floating in abundant extracellular mucin, suggestive of adenocarcinoma. Ancillary tests with alcian blue/periodic acid Schiff and mucicarmine staining revealed that it was a mucinous adenocarcinoma. Immunohistochemistry showed strong positivity with CDX2, confirming that the origin of the tumor was the colon.</p> <p>Conclusions</p> <p>Colorectal carcinoma has been noted to occur with increasing frequency in young adults in Africa. Most patients have mucinous adenocarcinoma, present late, and have rapid disease progression and poor outcome. Therefore, colorectal malignancy should no longer be excluded from consideration only on the basis of a patient's age. A high index of suspicion is important in the diagnosis of colorectal malignancy in young African patients.</p

    Human vascular adhesion proteın-1 (VAP-1): Serum levels for hepatocellular carcinoma in non-alcoholic and alcoholic fatty liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of hepatocellular cancer in complicated alcoholic and non-alcoholic fatty liver diseases is on the rise in western countries as well in our country. Vascular adhesion protein-1 (VAP-1) levels have been presented as new marker. In our study protocol, we assessed the value of this serum protein, as a newly postulant biomarker for hepatocellular cancer in patients with a history of alcoholic and non-alcoholic fatty liver diseases.</p> <p>Methods</p> <p>Pre-operative serum samples from 55 patients with hepatocellular cancer with a history of alcoholic and non-alcoholic fatty liver diseases and patients with cirrhosis were assessed by a quantitative sandwich ELISA using anti-VAP-1 mAbs. This technique is used to determine the levels of soluble VAP-1 (sVAP-1) in the serum.</p> <p>Results</p> <p>sVAP-1 levels were evaluated in patients with hepatocellular cancer and liver cirrhosis. There was a significant difference in mean VAP-1 levels between groups. Serum VAP-1 levels were found higher in patients with hepatocellular cancer.</p> <p>Conclusion</p> <p>These findings indicate that the serum level of sVAP-1 might be a beneficial marker of disease activity in chronic liver diseases.</p

    Identification of clusters of investors from their real trading activity in a financial market

    Full text link
    We use statistically validated networks, a recently introduced method to validate links in a bipartite system, to identify clusters of investors trading in a financial market. Specifically, we investigate a special database allowing to track the trading activity of individual investors of the stock Nokia. We find that many statistically detected clusters of investors show a very high degree of synchronization in the time when they decide to trade and in the trading action taken. We investigate the composition of these clusters and we find that several of them show an over-expression of specific categories of investors.Comment: 25 pages, 5 figure

    On the power and the systematic biases of the detection of chromosomal inversions by paired-end genome sequencing

    Get PDF
    One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with low coverage data. However, % of inversions located between segmental duplications are expected to go undetected by the most common sequencing strategies. In general, longer DNA libraries improve the detectability of inversions far better than increments of the coverage depth or the read length. Finally, we review the performance of three algorithms to detect inversions -SVDetect, GRIAL, and VariationHunter-, identify common pitfalls, and reveal important differences in their breakpoint precisions. These results stress the importance of the sequencing strategy for the detection of structural variants, especially inversions, and offer guidelines for the design of future genome sequencing projects
    corecore