3,974 research outputs found

    Manual for Promoting Agri-environment Measures in Natura 2000 sites in Bulgaria

    Get PDF

    Theoretical calculations of second and third-order nonlinear susceptibilities and their corresponding hyperpolarizabilities of a styrylquinolinium dye

    Get PDF
    The second (Xexp(2)) and third-order (Xexp(3)) susceptibilities of a styrylquinolinium dye (1) have been determined utilizing second-harmonic generation (SHG) and third-harmonic generation (THG) techniques, respectively. The reported measurement findings on Xexp(2) and Xexp(3) have been compared with the theoretical data evaluated here by means of ab-initio quantum mechanical calculations. The electric dipole moments (μ), static dipole polarizabilities (a) and first hyperpolarizabilities (β) have been computed by density functional theory (DFT) at B3LYP/6-311+G(d, p) level. To reveal the frequency-dependent second and third-order microscopic nonlinear optical (NLO) behavior of the title compound, the dynamic dipole polarizabilities, first and second (γ) hyperpolarizabilities have been theoretically investigated using time-dependent Hartree-Fock (TDHF) method. According to the experimental and theoretical results, the values of susceptibilities and the corresponding microscopic coefficients with large non-zero responses make the examined dye promising candidate for NLO applications

    Surface dynamics and ligand-core interactions of quantum sized photoluminescent gold nanoclusters

    Get PDF
    Quantum-sized metallic clusters protected by biological ligands represent a new class of luminescent materials; yet the understanding of structural information and photoluminescence origin of these ultrasmall clusters remains a challenge. Herein we systematically study the surface ligand dynamics and ligand–metal core interactions of peptide-protected gold nanoclusters (AuNCs) with combined experimental characterizations and theoretical molecular simulations. We show that the peptide sequence plays an important role in determining the surface peptide structuring, interfacial water dynamics and ligand–Au core interaction, which can be tailored by controlling peptide acetylation, constituent amino acid electron donating/withdrawing capacity, aromaticity/hydrophobicity and by adjusting environmental pH. Specifically, emission enhancement is achieved through increasing the electron density of surface ligands in proximity to the Au core, discouraging photoinduced quenching, and by reducing the amount of surface-bound water molecules. These findings provide key design principles for understanding the surface dynamics of peptide-protected nanoparticles and maximizing the photoluminescence of metallic clusters through the exploitation of biologically relevant ligand properties

    Z-scan determination and ab-initio computations on third-order optical nonlinearities of a styrylquinolinium dye

    Get PDF
    In order to elucidate the third-order nonlinear optical (NLO) phenomena of the styrylquinolinium dye (1), the nonlinear absorption parameter (ß) and third-order susceptibility (χ(3)) have been measured using the Z-scan measurements. The one-photon absorption (OPA) and two-photon absorption (TPA) characterizations have been determined by configuration interaction (CI) and time-dependent Hartree-Fock (TDHF) methods, respectively. The averaged (isotropic) second hyperpolarizability (〈γ〉) allows the determination of the third-order optical response. The ab-initio calculation on 〈γ〉 with non-zero value reveals that the title dye has relatively good third-order NLO properties. The calculated results of 1 on OPA wavelength, TPA cross-section (δ(ω)) and third-order susceptibility are in reasonable agreement with its experimental data

    The relation of steady evaporating drops fed by an influx and freely evaporating drops

    Full text link
    We discuss a thin film evolution equation for a wetting evaporating liquid on a smooth solid substrate. The model is valid for slowly evaporating small sessile droplets when thermal effects are insignificant, while wettability and capillarity play a major role. The model is first employed to study steady evaporating drops that are fed locally through the substrate. An asymptotic analysis focuses on the precursor film and the transition region towards the bulk drop and a numerical continuation of steady drops determines their fully non-linear profiles. Following this, we study the time evolution of freely evaporating drops without influx for several initial drop shapes. As a result we find that drops initially spread if their initial contact angle is larger than the apparent contact angle of large steady evaporating drops with influx. Otherwise they recede right from the beginning

    k=0Magnetic Structure and Absence of Ferroelectricity in SmFeO3

    Get PDF
    SmFeO3 has attracted considerable attention very recently due to the reported multiferroic properties above room-temperature. We have performed powder and single crystal neutron diffraction as well as complementary polarization dependent soft X-ray absorption spectroscopy measurements on floating-zone grown SmFeO3 single crystals in order to determine its magnetic structure. We found a k=0 G-type collinear antiferromagnetic structure that is not compatible with inverse Dzyaloshinskii-Moriya interaction driven ferroelectricity. While the structural data reveals a clear sign for magneto-elastic coupling at the N\'eel-temperature of ~675 K, the dielectric measurements remain silent as far as ferroelectricity is concerned

    Mechanical and Electronic Properties of MoS2_2 Nanoribbons and Their Defects

    Get PDF
    We present our study on atomic, electronic, magnetic and phonon properties of one dimensional honeycomb structure of molybdenum disulfide (MoS2_2) using first-principles plane wave method. Calculated phonon frequencies of bare armchair nanoribbon reveal the fourth acoustic branch and indicate the stability. Force constant and in-plane stiffness calculated in the harmonic elastic deformation range signify that the MoS2_2 nanoribbons are stiff quasi one dimensional structures, but not as strong as graphene and BN nanoribbons. Bare MoS2_2 armchair nanoribbons are nonmagnetic, direct band gap semiconductors. Bare zigzag MoS2_2 nanoribbons become half-metallic as a result of the (2x1) reconstruction of edge atoms and are semiconductor for minority spins, but metallic for the majority spins. Their magnetic moments and spin-polarizations at the Fermi level are reduced as a result of the passivation of edge atoms by hydrogen. The functionalization of MoS2_2 nanoribbons by adatom adsorption and vacancy defect creation are also studied. The nonmagnetic armchair nanoribbons attain net magnetic moment depending on where the foreign atoms are adsorbed and what kind of vacancy defect is created. The magnetization of zigzag nanoribbons due to the edge states is suppressed in the presence of vacancy defects.Comment: 11 pages, 5 figures, first submitted at November 23th, 200

    Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation

    Full text link
    To help provide insight into the remarkable catalytic behavior of the oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface oxygen, and structures involving both on-surface and sub-surface oxygen, as well as oxide-like structures at the Ag(111) surface have been studied for a wide range of coverages and adsorption sites using density-functional theory. Adsorption on the surface in fcc sites is energetically favorable for low coverages, while for higher coverage a thin surface-oxide structure is energetically favorable. This structure has been proposed to correspond to the experimentally observed (4x4) phase. With increasing O concentrations, thicker oxide-like structures resembling compressed Ag2O(111) surfaces are energetically favored. Due to the relatively low thermal stability of these structures, and the very low sticking probability of O2 at Ag(111), their formation and observation may require the use of atomic oxygen (or ozone, O3) and low temperatures. We also investigate diffusion of O into the sub-surface region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the adsorption of atomic oxygen and ozone-like species. The present studies, together with our earlier investigations of on-surface and surface-substitutional adsorption, provide a comprehensive picture of the behavior and chemical nature of the interaction of oxygen and Ag(111), as well as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
    corecore