11 research outputs found

    Impact of Capsular Switch on Invasive Pneumococcal Disease Incidence in a Vaccinated Population

    Get PDF
    BACKGROUND: Despite the dramatic decline in the incidence of invasive pneumococcal disease (IPD) observed since the introduction of conjugate vaccination, it is feared that several factors may undermine the future effectiveness of the vaccines. In particular, pathogenic pneumococci may switch their capsular types and evade vaccine-conferred immunity. METHODOLOGY/PRINCIPAL FINDINGS: Here, we first review the literature and summarize the available epidemiological data on capsular switch for S. pneumoniae. We estimate the weekly probability that a persistently carried strain may switch its capsule from four studies, totalling 516 children and 6 years of follow-up, at 1.5x10(-3)/week [4.6x10(-5)-4.8x10(-3)/week]. There is not enough power to assess an increase in this frequency in vaccinated individuals. Then, we use a mathematical model of pneumococcal transmission to quantify the impact of capsular switch on the incidence of IPD in a vaccinated population. In this model, we investigate a wide range of values for the frequency of vaccine-selected capsular switch. Predictions show that, with vaccine-independent switching only, IPD incidence in children should be down by 48% 5 years after the introduction of the vaccine with high coverage. Introducing vaccine-selected capsular switch at a frequency up to 0.01/week shows little effect on this decrease; yearly, at most 3 excess cases of IPD per 10(6) children might occur due to switched pneumococcal strains. CONCLUSIONS: Based on all available data and model predictions, the existence of capsular switch by itself should not impact significantly the efficacy of pneumococcal conjugate vaccination on IPD incidence. This optimistic result should be tempered by the fact that the selective pressure induced by the vaccine is currently increasing along with vaccine coverage worldwide; continued surveillance of pneumococcal populations remains of the utmost importance, in particular during clinical trials of the new conjugate vaccines

    Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse

    No full text
    Streptococcus pneumoniae is a leading cause of otitis media, sinusitis, pneumonia, bacteraemia and meningitis worldwide. The drawbacks associated with the limited number of various capsular polysaccharides that can be included in the polysaccharide-based vaccines focuses much attention on pneumococcal proteins as vaccine candidates. We extracted an enriched cell wall fraction from S. pneumoniae WU2. Approximately 150 soluble proteins could be identified by 2D gel electrophoresis. The proteins were screened by 2D-Western blotting using sera that were obtained longitudinally from children attending day-care centres at 18, 30 and 42 months of age and sera from healthy adult volunteers. The proteins were further identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Seventeen proteins were antigenic in children and adults, of which 13 showed an increasing antibody response with age in all eight children analysed. Two immunogenic proteins, fructose–bisphosphate aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and a control protein with known low immunogenicity, heat shock protein 70 (DnaK), were expressed in Escherichia coli, purified and used to immunize mice. Mouse antibodies elicited to the recombinant (r) FBA and rGAPDH were cross-reactive with several genetically unrelated strains of different serotypes and conferred protection to respiratory challenge with virulent pneumococci. In addition, the FBA used in this study (NP_345117) does not have a human ortholog and warrants further investigation as a candidate for a pneumococcal vaccine. In conclusion, the immunoproteomics based approach utilized in the present study appears to be a suitable tool for identification of novel S. pneumoniae vaccine candidates

    Differential activation of the immune system by virulent Streptococcus pneumoniae strains determines recovery or death of the host

    No full text
    Streptococcus pneumoniae infection may result in asymptomatic carriage, mucosal or invasive disease. We hypothesize that self-limiting or fatal disease outcome follows infection with S. pneumoniae differential activation of the host immune response. BALB/c and C57BL/6 mice were inoculated intranasally with S. pneumoniae serotype 3 strain WU2 and serotype 14 strain DW14 and mortality, bacterial load, pathological changes in the lungs and cytokines mRNA levels in the spleen were analysed. No differences between the C57BL/6 and the BALB/c inbred mice were observed except for the severity of their lung pathology and IL-4 expression. Infection of the two mouse strains with S. pneumoniae WU2 resulted in sepsis and death that occurred within 4 days post-inoculation. This death was preceded, in both mouse strains, in an increase over time of the lung bacterial load and bacteraemia. The lung pathology was characterized by diffuse pneumonia with marked congestion of the lungs. Analysis of mRNA expression of cytokines in the spleen revealed no alterations in tumour necrosis factor (TNF)-α, transforming growth factor (TGF)-β, interleukin (IL)-12 and interferon (IFN)-γ and induction of IL-10 and IL-4. The two strains of mice survived infection with S. pneumoniae DW14. This was accompanied by a reduction over time of lung bacterial load and bacteraemia. The lung pathology was characterized by focal lymphocyte infiltration and preserved architecture of the organ. Analysis of mRNA expression of cytokines in the spleen revealed a significant decrease in the levels of TNF-α, TGF-β, IL-12 and IFN-γ mRNA expression, which usually precedes cytokine protein expression. Interestingly, a significant increase in the levels of IL-4 mRNA expression was found in BALB/c mice only. This study suggests that differential activation or evasion of cytokine expression by S. pneumoniae virulent strains determines disease outcome regardless of the host's immunogenetic background

    Flavin Reductase Contributes to Pneumococcal Virulence by Protecting from Oxidative Stress and Mediating Adhesion and Elicits Protection Against Pneumococcal Challenge.

    Get PDF
    Pneumococcal flavin reductase (FlaR) is known to be cell-wall associated and possess age dependent antigenicity in children. This study aimed at characterizing FlaR and elucidating its involvement in pneumococcal physiology and virulence. Bioinformatic analysis of FlaR sequence identified three-conserved cysteine residues, suggesting a transition metal-binding capacity. Recombinant FlaR (rFlaR) bound Fe2+ and exhibited FAD-dependent NADP-reductase activity, which increased in the presence of cysteine or excess Fe2+ and inhibited by divalent-chelating agents. flaR mutant was highly susceptible to H2O2 compared to its wild type (WT) and complemented strains, suggesting a role for FlaR in pneumococcal oxidative stress resistance. Additionally, flaR mutant demonstrated significantly decreased mice mortality following intraperitoneal infection. Interestingly, lack of FlaR did not affect the extent of phagocytosis by primary mouse peritoneal macrophages but reduced adhesion to A549 cells compared to the WT and complemented strains. Noteworthy are the findings that immunization with rFlaR elicited protection in mice against intraperitoneal lethal challenge and anti-FlaR antisera neutralized bacterial virulence. Taken together, FlaR's roles in pneumococcal physiology and virulence, combined with its lack of significant homology to human proteins, point towards rFlaR as a vaccine candidate
    corecore