100 research outputs found

    Oxidative Depolymerization of Kraft Lignin for Microbial Conversion

    Get PDF
    The valorization of lignin is being increasingly recognized as crucial to improve the economic viability of integrated biorefineries. Because of its inherent heterogeneity and recalcitrance, lignin has been treated as a waste product in the pulp and paper industry, but new technologies are now being explored to transform lignin into a sustainable resource and enhance its value chain. In the present study, alkaline oxidative depolymerization was investigated as a potential form of pretreatment to enable further biological conversion of LignoBoost kraft lignin (LB). LB lignin oxidation reactions were studied at various temperatures (120-200 °C) and O2 partial pressures (3-15 bar) to identify the optimal conditions for obtaining a biocompatible, oxidatively depolymerized lignin (ODLB) stream. The low molecular weight compounds resulting from this treatment consisted mainly of aromatic monomers and carboxylic acids. The highest yield of aromatic monomers, 3 wt %, was obtained at 160 °C and 3 bar O2. The yield of carboxylic acids increased with both increasing temperature and O2 pressure, exceeding 13% under the harshest conditions investigated. The growth of four aromatic-catabolizing bacterial strains was examined on reaction product mixtures, all of which showed growth on agar plates utilizing ODLB as the sole source of carbon and energy. Rhodococcus opacus and Sphingobium sp. SYK-6 were found to consume most of the aromatic monomers present in the ODLB (e.g., vanillin, vanillate, acetovanillone, and guaiacol). The findings of this study indicate that pretreatment by oxidative depolymerization has potential in the biological valorization of technical lignin streams, for the production of valuable chemicals and materials

    Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden

    Get PDF
    We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the ÎŽ13C and ÎŽ15N values for animal references from VĂ€sterĂ„s. This research (BĂ€ckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD

    Using a Powered Bone Marrow Biopsy System Results in Shorter Procedures, Causes Less Residual Pain to Adult Patients, and Yields Larger Specimens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, a battery-powered bone marrow biopsy system was developed and cleared by the U.S. Food and Drug Administration to allow health care providers to access the bone marrow space quickly and efficiently. A multicenter randomized clinical trial was designed for adult patients to determine if the powered device had advantages over traditional manually-inserted needles in regard to length of procedure, patient pain, complications, user satisfaction, and pathological analysis of the specimens.</p> <p>Methods</p> <p>Adult patients requiring marrow sampling procedures were randomized for a Manual or Powered device. Visual Analog Scale (VAS) pain scores were captured immediately following the procedure and 1 and 7 days later. Procedure time was measured and core specimens were submitted to pathology for grading.</p> <p>Results</p> <p>Ten sites enrolled 102 patients into the study (Powered, n = 52; Manual, n = 50). Mean VAS scores for overall procedural pain were not significantly different between the arms (3.8 ± 2.8 for Powered, 3.5 ± 2.3 for Manual [p = 0.623]). A day later, more patients who underwent the Powered procedure were pain-free (67%) than those patients in the Manual group (33%; p = 0.003). One week later, there was no difference (83% for Powered patients; 76% for Manual patients.) Mean procedure time was 102.1 ± 86.4 seconds for the Powered group and 203.1 ± 149.5 seconds for the Manual group (p < 0.001). Pathology assessment was similar in specimen quality, but there was a significant difference in the specimen volume between the devices (Powered: 36.8 ± 21.2 mm<sup>3</sup>; Manual: 20.4 ± 9.0 mm<sup>3</sup>; p = 0.039). Two non-serious complications were experienced during Powered procedures (4%); but none during Manual procedures (p = 0.495).</p> <p>Conclusions</p> <p>The results of this first trial provide evidence that the Powered device delivers larger-volume bone marrow specimens for pathology evaluation. In addition, bone marrow specimens were secured more rapidly and subjects experienced less intermediate term pain when the Powered device was employed. Further study is needed to determine if clinicians more experienced with the Powered device will be able to use it in a manner that significantly reduces needle insertion pain; and to compare a larger sample of pathology specimens obtained using the Powered device to those obtained using traditional manual biopsy needles.</p

    Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity

    Get PDF
    International audienceSilica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: 1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol (PEG) molecules, 2) positively charged silica nanoparticles coated with amine groups and 3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 hours with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production and oxidative stress. Results showed that the highly positive charged nanoparticle, were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticles types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity

    Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis

    Get PDF
    Heavy reliance on plants is rare in Carnivora and mostly limited to relatively small species in subtropical settings. The feeding behaviors of extinct cave bears living during Pleistocene cold periods at middle latitudes have been intensely studied using various approaches including isotopic analyses of fossil collagen. In contrast to cave bears from all other regions in Europe, some individuals from Romania show exceptionally high ÎŽ15N values that might be indicative of meat consumption. Herbivory on plants with high ÎŽ15N values cannot be ruled out based on this method, however. Here we apply an approach using the ÎŽ15N values of individual amino acids from collagen that offsets the baseline ÎŽ15N variation among environments. The analysis yielded strong signals of reliance on plants for Romanian cave bears based on the ÎŽ15N values of glutamate and phenylalanine. These results could suggest that the high variability in bulk collagen ÎŽ15N values observed among cave bears in Romania reflects niche partitioning but in a general trophic context of herbivory

    Experiences of being exposed to intimate partner violence during pregnancy

    Get PDF
    In this study a phenomenological approach was used in order to enter deeply into the experience of living with violence during pregnancy. The aim of the study was to gain a deeper understanding of women's experiences of being exposed to intimate partner violence (IPV) during pregnancy. The data were collected through in-depth interviews with five Norwegian women; two during pregnancy and three after the birth. The women were between the age of 20 and 38 years. All women had received support from a professional research and treatment centre. The essential structure shows that IPV during pregnancy is characterized by difficult existential choices related to ambivalence. Existential choices mean questioning one's existence, the meaning of life as well as one's responsibility for oneself and others. Five constituents further explain the essential structure: Living in unpredictability, the violence is living in the body, losing oneself, feeling lonely and being pregnant leads to change. Future life with the child is experienced as a possibility for existential change. It is important for health professionals to recognize and support pregnant women who are exposed to violence as well as treating their bodies with care and respect

    New taxa of tuberous Corydalis (Fumariaceae)

    No full text
    • 

    corecore