74 research outputs found

    Molecular Correlates of Social Dominance: A Novel Role for Ependymin in Aggression

    Get PDF
    Theoretical and empirical studies have sought to explain the formation and maintenance of social relationships within groups. The resulting dominance hierarchies have significant fitness and survival consequences dependent upon social status. We hypothesised that each position or rank within a group has a distinctive brain gene expression profile that correlates with behavioural phenotype. Furthermore, transitions in rank position should determine which genes shift in expression concurrent with the new dominance status. We used a custom cDNA microarray to profile brain transcript expression in a model species, the rainbow trout, which forms tractable linear hierarchies. Dominant, subdominant and submissive individuals had distinctive transcript profiles with 110 gene probes identified using conservative statistical analyses. By removing the dominant, we characterised the changes in transcript expression in sub-dominant individuals that became dominant demonstrating that the molecular transition occurred within 48 hours. A strong, novel candidate gene, ependymin, which was highly expressed in both the transcript and protein in subdominants relative to dominants, was tested further. Using antibody injection to inactivate ependymin in pairs of dominant and subdominant zebrafish, the subdominant fish exhibited a substantial increase in aggression in parallel with an enhanced competitive ability. This is the first study to characterise the molecular signatures of dominance status within groups and the first to implicate ependymin in control of aggressive behaviour. It also provides evidence for indirect genetic effect models in which genotype/phenotype of an individual is influenced by conspecific interactions within a group. The variation in the molecular profile of each individual within a group may offer a new explanation of intraspecific variation in gene expression within undefined groups of animals and provides new candidates for empirical study

    ERK2 Suppresses Self-Renewal Capacity of Embryonic Stem Cells, but Is Not Required for Multi-Lineage Commitment

    Get PDF
    Activation of the FGF-ERK pathway is necessary for naïve mouse embryonic stem (ES) cells to exit self-renewal and commit to early differentiated lineages. Here we show that genetic ablation of Erk2, the predominant ERK isozyme expressed in ES cells, results in hyper-phosphorylation of ERK1, but an overall decrease in total ERK activity as judged by substrate phosphorylation and immediate-early gene (IEG) induction. Normal induction of this subset of canonical ERK targets, as well as p90RSK phosphorylation, was rescued by transgenic expression of either ERK1 or ERK2 indicating a degree of functional redundancy. In contrast to previously published work, Erk2-null ES cells exhibited no detectable defect in lineage specification to any of the three germ layers when induced to differentiate in either embryoid bodies or in defined neural induction conditions. However, under self-renewing conditions Erk2-null ES cells express increased levels of the pluripotency-associated transcripts, Nanog and Tbx3, a decrease in Nanog-GFP heterogeneity, and exhibit enhanced self-renewal in colony forming assays. Transgenic add-back of ERK2 is capable of restoring normal pluripotent gene expression and self-renewal capacity. We show that ERK2 contributes to the destabilization of ES cell self-renewal by reducing expression of pluripotency genes, such as Nanog, but is not specifically required for the early stages of germ layer specification

    Evolutionary History of the Vertebrate Mitogen Activated Protein Kinases Family

    Get PDF
    Background: The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear. Methodology/Principal Findings: The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gen

    Allelic diversity of S‑RNase alleles in diploid potato species

    Get PDF
    S-ribonucleases (S-RNases) control the pistil specificity of the self-incompatibility (SI) response in the genus Solanum and several other members of the Solanaceae. The nucleotide sequences of S-RNases corresponding to a large number of S-alleles or S-haplotypes have been characterised. However, surprisingly few S-RNase sequences are available for potato species. The identification of new S-alleles in diploid potato species is desirable as these stocks are important sources of traits such as biotic and abiotic resistance. S-RNase sequences are reported here from three distinct diploid types of potato: cultivated Solanum tuberosum Group Phureja, S. tuberosum Group Stenotomum, and the wild species Solanum okadae. Partial S-RNase sequences were obtained from pistil RNA by RT-PCR or 3’RACE (Rapid Amplification of cDNA Ends) using a degenerate primer. Full length sequences were obtained for two alleles by 5’RACE. Database searches with these sequences, identified sixteen S-RNases in total, all of which are novel. The sequence analysis revealed all the expected features of functional S-RNases. Phylogenetic analysis with selected published S-RNase and S-like-RNase sequences from the Solanaceae revealed extensive trans-generic evolution of the S-RNases and a clear distinction from S-like-RNases. Pollination tests were used to confirm the self-incompatibility status and cross-compatibility relationships of the S. okadae accessions. All the S. okadae accessions were found to be self-incompatible as expected with crosses amongst them exhibiting both cross-compatibility and semi-compatibility consistent with the S-genotypes determined from the S-RNase sequence data. The progeny analysis of four semi-compatible crosses examined by allele-specific PCR provided further confirmation that these are functional S-RNases

    Plate-based diversity subset screening generation 2: An improved paradigm for high throughput screening of large compound files

    Get PDF
    High throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time-consuming and costly and the use of subsets as an efficient alternative to screening these large collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity, or biological target focus. Previously we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer

    Pharmacokinetic-Pharmacodynamic Modeling in Pediatric Drug Development, and the Importance of Standardized Scaling of Clearance.

    Get PDF
    Pharmacokinetic/pharmacodynamic (PKPD) modeling is important in the design and conduct of clinical pharmacology research in children. During drug development, PKPD modeling and simulation should underpin rational trial design and facilitate extrapolation to investigate efficacy and safety. The application of PKPD modeling to optimize dosing recommendations and therapeutic drug monitoring is also increasing, and PKPD model-based dose individualization will become a core feature of personalized medicine. Following extensive progress on pediatric PK modeling, a greater emphasis now needs to be placed on PD modeling to understand age-related changes in drug effects. This paper discusses the principles of PKPD modeling in the context of pediatric drug development, summarizing how important PK parameters, such as clearance (CL), are scaled with size and age, and highlights a standardized method for CL scaling in children. One standard scaling method would facilitate comparison of PK parameters across multiple studies, thus increasing the utility of existing PK models and facilitating optimal design of new studies

    GABAergic Gene Expression in Postmortem Hippocampus from Alcoholics and Cocaine Addicts; Corresponding Findings in Alcohol-Naïve P and NP Rats

    Get PDF
    BACKGROUND:By performing identical studies in humans and rats, we attempted to distinguish vulnerability factors for addiction from neurobiological effects of chronic drug exposure. We focused on the GABAergic system within the hippocampus, a brain region that is a constituent of the memory/conditioning neuronal circuitry of addiction that is considered to be important in drug reinforcement behaviors in animals and craving and relapse in humans. METHODOLOGY:Using RNA-Seq we quantified mRNA transcripts in postmortem total hippocampus from alcoholics, cocaine addicts and controls and also from alcohol-naïve, alcohol preferring (P) and non-preferring (NP) rats selectively bred for extremes of alcohol-seeking behavior that also show a general addictive tendency. A pathway-targeted analysis of 25 GABAergic genes encoding proteins implicated in GABA synthesis, metabolism, synaptic transmission and re-uptake was undertaken. PRINCIPAL FINDINGS:Directionally consistent and biologically plausible overlapping and specific changes were detected: 14/25 of the human genes and 12/25 of the rat genes showed nominally significant differences in gene expression (global p values: 9×10⁻¹⁴, 7×10⁻¹¹ respectively). Principal FDR-corrected findings were that GABBR1 was down-regulated in alcoholics, cocaine addicts and P rats with congruent findings in NSF, implicated in GABAB signaling efficacy, potentially resulting in increased synaptic GABA. GABRG2, encoding the gamma2 subunit required for postsynaptic clustering of GABAA receptors together with GPHN, encoding the associated scaffolding protein gephryin, were both down-regulated in alcoholics and cocaine addicts but were both up-regulated in P rats. There were also expression changes specific to cocaine addicts (GAD1, GAD2), alcoholics (GABRA2) and P rats (ABAT, GABRG3). CONCLUSIONS/SIGNIFICANCE:Our study confirms the involvement of the GABAergic system in alcoholism but also reveals a hippocampal GABA input in cocaine addiction. Congruent findings in human addicts and P rats provide clues to predisposing factors for alcohol and drug addiction. Finally, the results of this study have therapeutic implications

    Familiality and partitioning the variability of femoral bone mineral density in women of child-bearing age

    Full text link
    The contributions of polygenic loci and environmental factors to femoral bone mineral density (BMD in g/cm 2 ) variability were estimated in modified family sets consisting of women of child-bearing age. Femoral BMDs were measured in 535 women who were members of 137 family sets consisting minimally of an index, her sister, and unrelated female control. The family set could also include multiple sisters and first cousins. Women included in these family sets were all between 20 and 40 year of age to minimize the cohort effects of maturation and menopause on measures of BMD. BMDs were measured at three femoral sites using dual photon densitometry. Values were regressed on age and Quetelet Index which explained 13–15% of the variability in BMD (dependent on site). Subsequent variance components analysis on the residuals indicated that unmeasured polygenic loci accounted for substantial additional variability: 67% for femoral neck, 58% for Wards triangle, and 45% for trochanter. These results suggest that polygenic loci account for approximately half of the variability in maxmal femoral BMD.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48002/1/223_2004_Article_BF00298785.pd
    corecore