160 research outputs found

    Potent Inhibition of Cicatricial Contraction in Proliferative Vitreoretinal Diseases by Statins

    Get PDF
    OBJECTIVE—Despite tremendous progress in vitreoretinal surgery, certain postsurgical complications limit the success in the treatment of proliferative vitreoretinal diseases (PVDs), such as proliferative diabetic retinopathy (PDR) and proliferative vitreoretinopathy (PVR). One of the most significant complications is the cicatricial contraction of proliferative membranes, resulting in tractional retinal detachment and severe vision loss. Novel pharmaceutical approaches are thus urgently needed for the management of these vision-threatening diseases. In the current study, we investigated the inhibitory effects of statins on the progression of PVDs

    Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia–reperfusion-induced endothelial cell apoptosis

    Get PDF
    Activation of cytoskeleton regulator Rho-kinase during ischemia–reperfusion (I/R) plays a major role in I/R injury and apoptosis. Since Rho-kinase is a negative regulator of the pro-survival phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, we hypothesized that inhibition of Rho-kinase can prevent I/R-induced endothelial cell apoptosis by maintaining PI3-kinase/Akt activity and that protective effects of Rho-kinase inhibition are facilitated by prevention of F-actin rearrangement. Human umbilical vein endothelial cells were subjected to 1 h of simulated ischemia and 1 or 24 h of simulated reperfusion after treatment with Rho-kinase inhibitor Y-27632, PI3-kinase inhibitor wortmannin, F-actin depolymerizers cytochalasinD and latrunculinA and F-actin stabilizer jasplakinolide. Intracellular ATP levels decreased following I/R. Y-27632 treatment reduced I/R-induced apoptosis by 31% (P < 0.01) and maintained Akt activity. Both effects were blocked by co-treatment with wortmannin. Y-27632 treatment prevented the formation of F-actin bundles during I/R. Similar results were observed with cytochalasinD treatment. In contrast, latrunculinA and jasplakinolide treatment did not prevent the formation of F-actin bundles during I/R and had no effect on I/R-induced apoptosis. Apoptosis and Akt activity were inversely correlated (R2 = 0.68, P < 0.05). In conclusion, prevention of F-actin rearrangement by Rho-kinase inhibition or by cytochalasinD treatment attenuated I/R-induced endothelial cell apoptosis by maintaining PI3-kinase and Akt activity

    Review debate: we need human rights not nationalism 'lite': globalization and British solidarity

    Get PDF
    The article explores the relationship of multiculturalism to social solidarity. The multicultural nature of Britain is accepted as a welcome reality but certain problems in relation to the development of multiculturalism in Britain are acknowledged. Various approaches to buttress or replace multiculturalism are reviewed. These are: a strengthened and/or reconstituted nationalism (`Britishness'); human rights; and social equality. The issue of citizenship recurs throughout. It is argued that a combined emphasis on human rights and greater social equality offer a better basis than nationalism for strengthening solidarity in Britain, especially in the longer term. Sociological theory offers a fruitful if strangely neglected starting point for understanding social solidarity. I draw critically on Durkheim and Marx to obtain some objective perspective on this controversial matter. Copyright 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution

    The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells

    Get PDF
    Background: Embryonic stem (ES) cells self-renew as coherent colonies in which cells maintain tight cell-cell contact. Although intercellular communications are essential to establish the basis of cell-specific identity, molecular mechanisms underlying intrinsic cell-cell interactions in ES cells at the signaling level remain underexplored. Methodology/Principal Findings: Here we show that endogenous Rho signaling is required for the maintenance of cell-cell contacts in ES cells. siRNA-mediated loss of function experiments demonstrated that Rock, a major effector kinase downstream of Rho, played a key role in the formation of cell-cell junctional assemblies through regulation of myosin II by controlling a myosin light chain phosphatase. Chemical engineering of this signaling axis by a Rock-specific inhibitor revealed that cell-cell adhesion was reversibly controllable and dispensable for self-renewal of mouse ES cells as confirmed by chimera assay. Furthermore, a novel culture system combining a single synthetic matrix, defined medium, and the Rock inhibitor fully warranted human ES cell self-renewal independent of animal-derived matrices, tight cell contacts, or fibroblastic niche-forming cells as determined by teratoma formation assay. Conclusions/Significance: These findings demonstrate an essential role of the Rho-Rock-Myosin signaling axis for the regulation of basic cell-cell communications in both mouse and human ES cells, and would contribute to advance i

    Simvastatin suppresses the differentiation of C2C12 myoblast cells via a Rac pathway.

    Get PDF
    Statins, which are known as cholesterol-lowering drugs, have several additional effects including the enhancement of bone formation and the stimulation of smooth muscle cell proliferation. In this study, we investigated the signal pathway of simvastatin operating in C2C12 myoblast cells. Myotube formation of C2C12 cells was efficiently blocked by 1 muM simvastatin, and mevalonic acid was able to cancel this effect. Geranylgeranyl pyrophosphate restored the myotube formation, whereas farnesyl pyrophosphate did not. These findings demonstrate that the Rho family, such as Rho, Rac and Cdc42, occurring downstream of geranylgeranyl pyrophosphate in the mevalonic acid pathway, was involved in the simvastatin-mediated blockage of myotube formation. An inhibitor of Rho kinase did not influence the myotube formation; whereas an inhibitor of Rac blocked this process. Taken together, we conclude that the differentiation of C2C12 cells into myotubes was blocked by simvastatin through the pathway mediated by Rac, not by Rho

    Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice

    Get PDF
    Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA

    Atorvastatin induces associated reductions in platelet P-selectin, oxidized low-density lipoprotein, and interleukin-6 in patients with coronary artery diseases.

    Get PDF
    The development and progression of atherosclerosis comprises various processes, such as endothelial dysfunction, chronic inflammation, thrombus formation, and lipid profile modification. Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors that have pleiotropic effects in addition to cholesterol-lowering properties. However, the mechanisms of these effects are not completely understood. Here, we investigated whether atorvastatin affects the levels of malondialdehyde-modified low-density lipoprotein (MDALDL), an oxidized LDL, the proinflammatory cytokine interleukin-6 (IL-6), or platelet P-selectin, a marker of platelet activation, relative to that of LDL cholesterol (LDL-C). Forty-eight patients with coronary artery disease and hyperlipidemia were separated into two groups that were administered with (atorvastatin group) or without (control group) atorvastatin. The baseline MDA-LDL level in all participants significantly correlated with LDL-C (r = 0.71, P < 0.01) and apolipoprotein B levels (r = 0.66, P < 0.01). Atorvastatin (10 mg/day) significantly reduced the LDL-C level within 4 weeks and persisted for a further 8 weeks of administration. Atorvastatin also reduced the MDA-LDL level within 4 weeks and further reduced it over the next 8 weeks. Platelet P-selectin expression did not change until 4 weeks of administration and then significantly decreased at 12 weeks, whereas the IL-6 level was gradually, but not significantly, reduced at 12 weeks. In contrast, none of these parameters significantly changed in the control group within these time frames. The reduction (%) in IL-6 between 4 and 12 weeks after atorvastatin administration significantly correlated with that of MDALDL and of platelet P-selectin (r = 0.65, P < 0.05 and r = 0.70, P < 0.05, respectively). These results suggested that the positive effects of atorvastatin on the LDL-C oxidation, platelet activation and inflammation that are involved in atherosclerotic processes are exerted in concert after lowering LDL-C

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall
    corecore