7,127 research outputs found

    Modal interpolation program, L215 (INTERP). Volume 1: Engineering and usage

    Get PDF
    The usage of the Modal Interpolation Program L215 (INTERP) is described. The program uses modal data to form sets of arrays containing interpolation coefficients. The interpolation arrays can then be used to determine displacements at various aerodynamic surface and surface slopes that are parallel and perpendicular to the freestream direction. Five different interpolation methods are available. A description of the data manipulation and the interpolation methods is presented

    Shuttle STS-2 mission communication systems RF coverage and performance predictions. Volume 1: Ascent

    Get PDF
    The RF communications capabilities and nominally expected performance for the ascent phase of the second orbital flight of the shuttle are provided. Predicted performance is given mainly in the form of plots of signal strength versus elapsed mission time for the STDN (downlink) and shuttle orbiter (uplink) receivers for the S-band PM and FM, and UHF systems. Performance of the NAV and landing RF systems is treated for RTLS abort, since in this case the spacecraft will loop around and return to the launch site. NAV and landing RF systems include TACAN, MSBLS, and C-band altimeter. Signal strength plots were produced by a computer program which combines the spacecraft trajectory, antenna patterns, transmit and receive performance characteristics, and system mathematical models. When available, measured spacecraft parameters were used in the predictions; otherwise, specified values were used. Specified ground station parameter values were also used. Thresholds and other criteria on the graphs are explained

    Nonlinear Volatility of River Flux Fluctuations

    Full text link
    We study the spectral properties of the magnitudes of river flux increments, the volatility. The volatility series exhibits (i) strong seasonal periodicity and (ii) strongly power-law correlations for time scales less than one year. We test the nonlinear properties of the river flux increment series by randomizing its Fourier phases and find that the surrogate volatility series (i) has almost no seasonal periodicity and (ii) is weakly correlated for time scales less than one year. We quantify the degree of nonlinearity by measuring (i) the amplitude of the power spectrum at the seasonal peak and (ii) the correlation power-law exponent of the volatility series.Comment: 5 revtex pages, 6 page

    Experimental search for the decay mode K_L -> pi^0 gamma e^+ e^-

    Full text link
    We report on results of a search for the decay mode K_L -> pi^0 gamma e^+ e^- conducted by the E162 experiment at KEK. We observed no events and set a 90% confidence level upper limit of Br(K_L -> pi^0 gamma e^+ e^-)< 7.1x10^{-7} for its branching ratio. This is the first published experimental result on this decay mode.Comment: 10 pages, 4 figures, submitted to Physics Letters

    Experimental investigation into the kinetics of Falcon UF concentration: Implications for fluid dynamic-based modelling

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Centrifugal gravity separators, such as the Falcon UltraFine (UF) concentrator, are the most common gravity concentration techniques used for fine particles processing. Hence, understanding the kinetics and separation mechanisms at play within these separators is of paramount interest. Recent research yielded a predictive physical model for the Falcon UF which however does not explain some results obtained with industrial ores. The Falcon UF kinetics have been investigated through the processing of fine-grained ores from the Altenberg tin deposit (Germany), the Tabuaço tungsten deposit (Portugal), a synthetic iron ore as well as results from previous studies on kaolin residues. Results have shown an evolution of Falcon UF performance with time/feed mass in contradiction with the stationary separation hypothesis on which the physical model was based. In terms of Falcon UF separation timing, four phases can be distinguished. First, upon initial feeding of the bowl, particles are trapped or rejected depending on their settling velocity. It yields a relatively ineffective selection according to density so that only ultrafine particles are ejected from the bowl, resulting in the quick growth of the concentrate bed. When the bed reaches a critical size, recovery and enrichment continue to increase through selective resuspension phenomenon that favours the concentration of dense particles and the ejection of larger particles. This way, the bed builds up while the content of concentrate bed surface evolves until resuspension balances the stream of dense material reaching the bed and recovery drops. The evolution of partition curves over time confirmed the low recovery of ultrafine particles during the whole operation but also showed a decrease of coarse particles recovery with time. It suggests that the second separation mechanism is less sensible to particle size compared to the first one and that size even has a negative impact on recovery. Furthermore, erosion figures in furrows are observed in the concentrate bed which may play locally an active role in the separation. These observations suggest that two separation mechanisms are at play. Firstly, differential particles settling within the flowing film which is already accounted for in the existing physical model. Secondly, resuspension of particles from the concentrate bed by the action of a lift force acting preferentially on coarse particles deposited at the surface of the bed and resulting in the rejection of coarser and lower-density particles. The addition of a lift force component to the existing model is discussed and a resuspension criterion is proposed as a guidance of the physics involved in this second separation mechanism. Future developments will require a dynamic model which would need to integrate the evolution of the concentrate bed content over time.European Union Horizon 2020French National Research Agenc

    This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology

    Get PDF
    The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of ``fairness''deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of ``fairness'' led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus

    Infinite Momentum Frame Calculation of Semileptonic Heavy \Lambda_b\to\Lambda_c Transitions Including HQET Improvements

    Full text link
    We calculate the transition form factors that occur in heavy Λ\Lambda-type baryon semileptonic decays as e.g. in Λb→Λc++l−+νˉl\Lambda_{b} \to \Lambda_{c}^{+} + l^{-} + \bar{\nu}_{l} . We use Bauer-Stech-Wirbel type infinite momentum frame wave functions for the heavy Λ\Lambda-type baryons which we assume to consist of a heavy quark and a light spin-isospin zero diquark system. The form factors at q2=0 q^{2} = 0 are calculated from the overlap integrals of the initial and final Λ\Lambda-type baryon states. To leading order in the heavy mass scale the structure of the form factors agrees with the HQET predictions including the normalization at zero recoil. The leading order ω\omega-dependence of the form factors is extracted by scaling arguments. By comparing the model form factors with the HQET predictions at O(1/mQ){\cal O}(1/m_{Q}) we obtain a consistent set of model form factors up to O(1/mQ){\cal O}(1/m_{Q}). With our preferred choice of parameter values we find that the contribution of the non-leading form factor is practically negligible. We use our form factor predictions to compute rates, spectra and various asymmetry parameters for the semi-leptonic decay Λb→Λc++l−+νˉl\Lambda_{b} \to \Lambda_{c}^{+} + l^{-} + \bar{\nu}_{l} .Comment: 24 pages, LaTeX, 6 figures are included in PostScript format. Final version of paper to appear in Phys.Rev.
    • …
    corecore