97 research outputs found
Hyperuricemia Is Independently Associated with Coronary Heart Disease and Renal Dysfunction in Patients with Type 2 Diabetes Mellitus
AIMS: To investigate the relationship between hyperuricemia (HUA) and the clinical backgrounds in Japanese patients with type 2 diabetes mellitus. METHODS: After a cross-sectional study evaluating the association of HUA with the clinical characteristics in 1,213 patients with type 2 diabetes mellitus, the estimated glomerular filtration rate (eGFR) and the incidence of diabetic macroangiopathies was investigated in a prospective observational study in 1,073 patients during a 3.5 year period. HUA was defined by serum uric acid levels >327 μmol/L or as patients using allopurinol. RESULTS: The frequency of HUA was significantly higher in the diabetic patients (32% in men and 15% in women) than in the normal controls (14% in men and 1% in women). In total, HUA was found in 299 (25%) of the patients during the cross-sectional study. Even after adjusting for sex, drinking status, treatment for diabetes mellitus, body mass index, hypertension, use of diuretics, hyperlipidemia, HbA1c and/or the eGFR, the HUA was independently associated with some diabetic complications. The eGFR was significantly reduced in HUA patients compared to those with normouricemia in the 12 months after observation was started. HUA was also an independent risk factor for coronary heart disease even after adjustment in the Cox proportional hazard model. CONCLUSIONS: HUA is a associated with diabetic micro- and macroangiopathies. HUA is a predictor of coronary heart disease and renal dysfunction in patients with type 2 diabetes mellitus. However, the influence of HUA is considered to be limited
Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae)
Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids
Gene expression profile during coffee fruit development and identification of candidate markers for phenological stages
The objective of this work was to identify genes that could be used as suitable markers for molecular recognition of phenological stages during coffee (Coffea arabica) fruit development. Four cultivars were evaluated as to their differential expression of genes associated to fruit development and maturation processes. Gene expression was characterized by both semi-quantitative and quantitative RT-PCR, in fruit harvested at seven different developmental stages, during three different seasons. No size polymorphisms or differential expression were observed among the cultivars for the evaluated genes; however, distinct expression profiles along fruit development were determined for each gene. Four out of the 28 evaluated genes exhibited a regular expression profile in all cultivars and harvest seasons, and, therefore, they were validated as candidate phenological markers of coffee fruit. The gene α-galactosidase can be used as a marker of green stage, caffeine synthase as a marker of transition to green and yellowish-green stages, and isocitrate lyase and ethylene receptor 3 as markers of late maturation
The Climate Response to Emissions Reductions Due to COVID‐19: Initial Results From CovidMIP
Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020–2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate. © 2021. Crown Copyright. © 2021. Her Majesty the Queen in Right of Canada. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland. Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA
Stratomesospheric CO measured by a ground-based Fourier transform spectrometer over Poker Flat, Alaska: Comparisons with Odin/SMR and a 2-D model
The interseasonal variability of stratomesospheric CO is reported from Poker Flat, Alaska, using spectra from a ground-based Fourier Transform Spectrometer (gb-FTS) for the time period from 2000 to 2004. The CO spectra were analyzed using an optimal estimation technique that separates the tropospheric and stratospheric/mesospheric components into partial columns. The distribution of CO in the polar winter is such that the gb-FTS retrieved partial column is weighted to the mesosphere. The gb-FTS data are compared with measurements of partial column CO from the Sub-Millimeter Radiometer on board the Odin satellite and shown to be in very good agreement despite the relatively small sample size. The mean difference of the two data sets indicates a small positive bias (7.6 ± 6%) in favor of the Odin data, with a correlation coefficient, r2 = 0.91. The gb-FTS data indicate that there is a strong seasonal dependence of the CO partial column that is consistent with known winter polar thermospheric descent of CO enriched air. Year-to-year variability is explained in terms of mesospheric wind dynamics, which show 2004 and components of 2002 were affected by earlier than expected breakdown (30 ± 13 d) of the winter polar circulation compared with 2000 to 2003. Finally, the measured CO data is compared with a 2-D chemical transport model that gives support to the idea that springtime polar mesospheric CO is driven by meridional winds
- …