9 research outputs found

    ATGL promotes the proliferation of hepatocellular carcinoma cells via the p‐AKT signaling pathway

    Get PDF
    Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of adipose triglyceride lipase (ATGL) in hepatocellular carcinoma cells has not been elucidated. We evaluated the function of ATGL in hepatocellular carcinoma using methyl azazolyl blue and migration assay through overexpression of ATGL in HepG2 cells. Quantitative reverse‐transcription polymerase chain reaction and Western blot analyses were used to assess the mechanisms of ATGL in hepatocellular carcinoma. In the current study, we first constructed and transiently transfected ATGL into hepatocellular carcinoma cells. Secondly, we found that ATGL promoted the proliferation of hepatoma cell lines via upregulating the phosphorylation of AKT, but did not affect the metastatic ability of HCC cells. Moreover, the p‐AKT inhibitor significantly eliminated the effect of ATGL on the proliferation of hepatoma carcinoma cells. Taken together, our results indicated that ATGL promotes hepatocellular carcinoma cells proliferation through upregulation of the AKT signaling pathway

    Epidemiological and laboratory characteristics of Omicron infection in a general hospital in Guangzhou: a retrospective study

    Get PDF
    The COVID-19 pandemic caused by SARS-CoV-2 has emerged as a major global public health concern. In November 2022, Guangzhou experienced a significant outbreak of Omicron. This study presents detailed epidemiological and laboratory data on Omicron infection in a general hospital in Guangzhou between December 1, 2022, and January 31, 2023. Out of the 55,296 individuals tested, 12,346 were found to be positive for Omicron. The highest prevalence of positive cases was observed in the 20 to 39 age group (24.6%), while the lowest was in children aged 0 to 9 years (1.42%). Females had a higher incidence of infection than males, accounting for 56.6% of cases. The peak time of Omicron infection varied across different populations. The viral load was higher in older adults and children infected with Omicron, indicating age-related differences. Spearman’s rank correlation analysis revealed positive correlations between Ct values and laboratory parameters in hospitalized patients with Omicron infection. These parameters included CRP (rs = 0.059, p = 0.009), PT (rs = 0.057, p = 0.009), INR (rs = 0.055, p = 0.013), AST (rs = 0.067, p = 0.002), LDH (rs = 0.078, p = 0.001), and BNP (rs = 0.063, p = 0.014). However, EO (Eosinophil, rs = −0.118, p < 0.001), BASO (basophil, rs = −0.093, p < 0.001), and LY (lymphocyte, rs = −0.069, p = 0.001) counts showed negative correlations with Ct values. Although statistically significant, the correlation coefficients between Ct values and these laboratory indices were very low. These findings provide valuable insights into the epidemiology of Omicron infection, including variations in Ct values across gender and age groups. However, caution should be exercised when utilizing Ct values in clinical settings for evaluating Omicron infection

    Iodine isotopes (<sup>129</sup>I and <sup>127</sup>I) in the hydrosphere of Qinghai-Tibet region and South China Sea

    No full text
    The radioactive isotope I-129, with a half-life of 1.57 x 10(7) years, is widely used as a tracer to assess nuclear safety, to track environmental and geological events and to figure out the details of the stable iodine geochemical cycle. This work investigated the I-129 and I-127 distribution in water samples collected from the terrestrial (rivers, lakes and springs) and marine water systems (estuary and sea) in China. The measured I-129 concentrations of (1-51) x 10(6) atoms/L and I-129/I-127 ratios of (0.03-21) x 10(-10) shows the variability of I-129 level in the water systems. The local permafrost and seasonal frozen environment play a key role in groundwater recharge in the Qinghai-Tibet region, which is reflected in the I-129 distribution in surface water. The depth distribution of I-129 in the water column of the South China Sea reflects the effluence of different currents. The results also indicate that the hydrosphere of China contains one to three orders of magnitude less I-129 compared to those reported in Europe. Despite the large distance, the European nuclear fuel reprocessing facilities represent the major source of I-129 in the hydrosphere of China through atmospheric transport. The contribution of the Fukushima nuclear accident to I-129 levels in the hydrosphere of China was negligible

    Relationship between precipitation and 10Be and impacts on soil dynamics

    No full text
    Meteoric beryllium-10 (10Be) is commonly used as a proxy of landscape dynamics (erosion and sedimentation rates) and soil development. Soil represents the first-stage reservoir of meteoric 10Be, and variability in the concentration of the isotope in soils may be affected by soil properties and atmospheric deposition. Although many investigations have targeted this issue, there are still problems in estimating the atmospheric input of the isotope in different soil environments. Here, we used 10Be data measured in soils distributed across China to explore the potential influence of meteorological and pedological conditions on the isotope concentration and related applications. In addition, to determine the mechanisms controlling 10Be concentrations in topsoil on a regional scale, the soil samples were sub-divided into 18 different catchments according to fluvial systems. The results indicated that there were significant negative correlations between precipitation and the soil 10Be concentration in high-precipitation regions (>1200 mm·y−1) and significant positive correlations for soils in low precipitation regions (<1200 mm·y−1). The data also revealed that precipitation is the most important variable controlling the 10Be concentration in soils of China when compared with the effects of soil properties such as grain size, mineralogy, pH, and cation exchange capacity. Land use and soil erosion may have limited impacts on the distribution of 10Be in soils

    Holocene monsoon dynamics at Kunlun Pass on the northeastern Qinghai-Tibet Plateau

    No full text
    Various proxy records have been used for the understanding of environmental and climate variations during the Holocene. Here, for the first time, we use meteoric 10Be isotope measurements performed on sediments from a drill core collected at the Kunlun Pass (KP) on the northeastern Qinghai-Tibet Plateau (NETP) to investigate hydroclimate changes during the Holocene. The 10Be flux suggests relative low levels in the Early Holocene, followed by a sharp increase to high values at around 4 ka BP (4 ka BP = 4000 years before present). Afterwards, the 10Be flux remains on a high level during the Late Holocene, but decreases slightly towards today. These 10Be deposition patterns are compared to moisture changes in regions dominated by the Indian Summer Monsoon (ISM), East Asian Summer Monsoon (EASM), and the Westerlies. Different from the gradual changes in monsoon patterns, the 10Be data reveal low levels during the Early Holocene until ~4 ka BP when an obvious increase is indicated and a relative high level continues to this day, which is relatively more in agreement with patterns of the Westerlies. This finding provides a new evidence for a shift in the dominant pattern of atmospheric circulation at the KP region from a more monsoonal one to one dominated by the Westerlies. Our results improve the understanding of non-stationary interactions and spatial relevance of the EASM, the ISM and the Westerlies on the Qinghai-Tibet Plateau

    Metagenomic next-generation sequencing for the diagnosis of Pneumocystis jirovecii Pneumonia in critically pediatric patients

    No full text
    Abstract Objective The aim of this study was to evaluate the effectiveness of metagenomic next-generation sequencing (mNGS) for the diagnosis of Pneumocystis jirovecii Pneumonia (PCP) in critically pediatric patients. Methods Seventeen critically pediatric patients with PCP and sixty patients diagnosed with non-PCP pneumonia who were admitted in pediatric intensive care unit between June 2018 and July 2021 were enrolled. Conventional methods and mNGS for detecting Pneumocystis jirovecii (P. jirovecii) were compared. The patients’ demographics, comorbidities, laboratory test results, antibiotic treatment response and 30 day mortality were analyzed. Result The mNGS showed a satisfying diagnostic performance with a sensitivity of 100% in detecting P. jirovecii compared with Gomori methenamine silver staining (5.9%), serum (1,3)-β-D-glucan (86.7%) and and LDH (55.6%). The diagnostic specificity of mNGS for PCP was higher than that of serum BDG (56.7%) and LDH (71.4%). In PCP group, over one thirds’ cases had mixed infections. Compared with survivors, non-survivors had higher stringently mapped read numbers (SMRNs) in bronchoalveolar lavage fluid (BALF) sample (P < 0.05), suggesting SMRNs were closely associated with the severity of response. The detection for P. jirovecii by mNGS both in BALF and blood samples reached a concordance rate of 100%, and the SMRNs in the BALF were remarkably higher than that in blood samples. Initial antimicrobial treatment was modified in 88.2% of PCP patients based on the mNGS results. Conclusion The mNGS is a potential and efficient technology in diagnosing PCP and shows a satisfying performance in the detection of co-pathogens. Both blood and BALF samples for mNGS are suggested for the presumptive diagnosis of PCP
    corecore