647 research outputs found

    Neural Representations of Food-Related Attributes in the Human Orbitofrontal Cortex during Choice Deliberation in Anorexia Nervosa

    Get PDF
    Decisions about what to eat recruit the orbitofrontal cortex (OFC) and involve the evaluation of food-related attributes such as taste and health. These attributes are used differently by healthy individuals and patients with disordered eating behavior, but it is unclear whether these attributes are decodable from activity in the OFC in both groups and whether neural representations of these attributes are differentially related to decisions about food. We used fMRI combined with behavioral tasks to investigate the representation of taste and health attributes in the human OFC and the role of these representations in food choices in healthy women and women with anorexia nervosa (AN). We found that subjective ratings of tastiness and healthiness could be decoded from patterns of activity in the OFC in both groups. However, health-related patterns of activity in the OFC were more related to the magnitude of choice preferences among patients with AN than healthy individuals. These findings suggest that maladaptive decision-making in AN is associated with more consideration of health information represented by the OFC during deliberation about what to eat. SIGNIFICANCE STATEMENT An open question about the OFC is whether it supports the evaluation of food-related attributes during deliberation about what to eat. We found that healthiness and tastiness information was decodable from patterns of neural activity in the OFC in both patients with AN and healthy controls. Critically, neural representations of health were more strongly related to choices in patients with AN, suggesting that maladaptive overconsideration of healthiness during deliberation about what to eat is related to activity in the OFC. More broadly, these results show that activity in the human OFC is associated with the evaluation of relevant attributes during value-based decision-making. These findings may also guide future research into the development of treatments for AN

    The Synthesis and Characterization of LiFeAs and NaFeAs

    Full text link
    The newest homologous series of superconducting As-pnictides, LiFeAs (Li111) and NaFeAs (Na111) have been synthesized and investigated. Both crystallize with the layered tetragonal anti-PbFCl-type structure in P4/nmm space group. Polycrystalline samples and single-crystals of Li111 and Na111 display superconducting transitions at ~ 18 K and 12-25 K, respectively. No magnetic order has been found in either compound, although a weak magnetic background is clearly in evidence. The origin of the carriers and the stoichiometric compositions of Li111 and Na111 were explored.Comment: submitted for publication in Physica C special issue on Fe-pnictide

    Model-based rationalization of mixture toxicity and accumulation in Triticum aestivum upon concurrent exposure to yttrium, lanthanum, and cerium

    Get PDF
    Rare earth elements (REEs) often co-exist in the environment, but predicting their ‘cocktail effects’ is still challenging, especially for high-order mixtures with more than two components. Here, we systematically investigated the toxicity and accumulation of yttrium, lanthanum, and cerium mixtures in Triticum aestivum following a standardized bioassay. Toxic effects of mixtures were predicted using the reference model of Concentration Addition (CA), Ternary model, and Ternary-Plus model. Interactions between the REEs in binary and ternary mixtures were determined based on external and internal concentrations, and their magnitude estimated from the parameters deviated from CA. Strong antagonistic interactions were found in the ternary mixtures even though there were no significant interactions in the binary mixtures. Predictive ability increased when using the CA model, Ternary model, and Ternary-Plus model, with R2 = 0.78, 0.80, and 0.87 based on external exposure concentrations, and R2 = 0.72, 0.73, and 0.79, respectively based on internal concentrations. The bioavailability-based model WHAM-FTOX explained more than 88 % and 85 % of the toxicity of binary and ternary REE treatments, respectively. Our result showed that the Ternary-Plus model and WHAM-FTOX model are promising tools to account for the interaction of REEs in mixtures and could be used for their risk assessment

    A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block

    Full text link
    A protocol for quantum secure direct communication using blocks of EPR pairs is proposed. A set of ordered NN EPR pairs is used as a data block for sending secret message directly. The ordered NN EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender, Alice encodes the secret message directly on the message-coding sequence and send them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev

    Current rectification by simple molecular quantum dots: an ab-initio study

    Full text link
    We calculate a current rectification by molecules containing a conjugated molecular group sandwiched between two saturated (insulating) molecular groups of different length (molecular quantum dot) using an ab-initio non-equilibrium Green's function method. In particular, we study S-(CH2)m-C10H6-(CH2)n-S dithiol with Naphthalene as a conjugated central group. The rectification current ratio ~35 has been observed at m = 2 and n = 10, due to resonant tunneling through the molecular orbital (MO) closest to the electrode Fermi level (lowest unoccupied MO in the present case). The rectification is limited by interference of other conducting orbitals, but can be improved by e.g. adding an electron withdrawing group to the naphthalene.Comment: 8 pages, 9 figure

    Ocean Circulation Causes Strong Variability in the Mid-Atlantic Bight Nitrogen Budget

    Get PDF
    Understanding of nitrogen cycling on continental shelves, a critical component of global nutrient cycling, is hampered by limited observations compared to the strong variability on a wide range of time and space scales. Numerical models have the potential to partially alleviate this issue by filling spatiotemporal data gaps and hence resolving annual area-integrated nutrient fluxes. In this study, a three-dimensional biogeochemical-circulation model was implemented to simulate the Mid-Atlantic Bight (MAB) nitrogen budget. Model results demonstrate that, on average, MAB net community production (NCP) was positive (+0.27 Tg N/year), indicating net autotrophy. Interannual variability in NCP was strong, with annual values ranging between 0.19 and 0.41 Tg N/year. Along-shelf and across-shelf horizontal transport fluxes were the other dominant terms in the nitrogen budget and were primarily responsible for this NCP variability. The along-shelf current transported nitrogen from the north (0.65 Tg N/year) into the MAB, supplementing the nitrogen entering from terrestrial inputs (0.27 Tg N/year). However, NCP was highest in the year when total water volume transport and inorganic nitrogen input was strongest across the continental slope in the southern MAB, rather than when terrestrial inputs were greatest. Interannual variability of NCP appears to be linked to changes in the positions of the Gulf Stream and Slope Water Gyre. Overall, the strong spatiotemporal variability of the nitrogen fluxes highlights the importance of observations throughout all seasons and multiple years in order to accurately resolve the current status and future changes of the MAB nitrogen budget

    The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2

    Get PDF
    We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO2 -mediated control of stomatal development. In the control of stomatal aperture by CO2 , BIG is only required in elevated CO2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO2 -mediated responses

    Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Get PDF
    We investigate the dependence of black-hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M∗) in the CANDELS/GOODS-South field in the redshift range of 0.5≤z<2.0. Our sample consists of ≈18000 galaxies, allowing us to probe galaxies with 0.1≲SFR≲100 M⊙ yr−1 and/or 108≲M∗≲1011 M⊙. We use sample-mean BHAR to approximate long-term average BHAR. Our sample-mean BHARs are derived from the Chandra Deep Field-South 7 Ms observations, while the SFRs and M∗ have been estimated by the CANDELS team through SED fitting. The average BHAR is correlated positively with both SFR and M∗, and the BHAR-SFR and BHAR-M∗ relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M∗ than SFR. This result indicates that M∗ is the primary host-galaxy property related to black-hole growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies (M∗≳1010M⊙) have significantly higher BHAR/SFR ratios than less-massive galaxies, indicating the former have higher black-hole fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between MBH and M∗ for local giant ellipticals, and suggest their MBH/M∗ is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher MBH/M∗ compared to dwarfs

    An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field-South: The AGN Fraction and X-Ray Properties of Submillimeter Galaxies

    Get PDF
    The large gas and dust reservoirs of submillimeter galaxies (SMGs) could potentially provide ample fuel to trigger an active galactic nucleus (AGN), but previous studies of the AGN fraction in SMGs have been controversial largely due to the inhomogeneity and limited angular resolution of the available submillimeter surveys. Here we set improved constraints on the AGN fraction and X-ray properties of the SMGs with Atacama Large Millimeter/submillimeter Array (ALMA) and Chandra observations in the Extended Chandra Deep Field-South (E-CDF-S). This study is the first among similar works to have unambiguously identified the X-ray counterparts of SMGs; this is accomplished using the fully submillimeter-identified, statistically reliable SMG catalog with 99 SMGs from the ALMA LABOCA E-CDF-S Submillimeter Survey. We found 10 X-ray sources associated with SMGs (median redshift z = 2.3), of which eight were identified as AGNs using several techniques that enable cross-checking. The other two X-ray detected SMGs have levels of X-ray emission that can be plausibly explained by their star formation activity. Six of the eight SMG-AGNs are moderately/highly absorbed, with N H > 1023 cm?2. An analysis of the AGN fraction, taking into account the spatial variation of X-ray sensitivity, yields an AGN fraction of 176+16%17^{+16}_{-6}\% for AGNs with rest-frame 0.5-8?keV absorption-corrected luminosity ?7.8 × 1042?erg?s?1; we provide estimated AGN fractions as a function of X-ray flux and luminosity. ALMA's high angular resolution also enables direct X-ray stacking at the precise positions of SMGs for the first time, and we found four potential SMG-AGNs in our stacking sample

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    corecore