1,834 research outputs found
Seebeck coefficients of cells with lithium carbonate and gas electrodes
AbstractThe Seebeck coefficient is reported for thermoelectric cells with gas electrodes and a molten electrolyte of one salt, lithium carbonate, at an average temperature of 750°C. We show that the coefficient, which is 0.88mVK−1, can be further increased by adding an inorganic oxide powder to the electrolyte. We interpret the measurements using the theory of irreversible thermodynamics and find that the increase in the Seebeck coefficient is due to a reduction in the transported entropy of the carbonate ion when adding solid particles to the alkali carbonate. Oxides of magnesium, cerium and lithium aluminate lead to a reduction in the transported entropy from 232±12 to around 200±4JK−1mol−1. This is of importance for design of thermoelectric converters
Multigluon Helicity Amplitudes Involving a Quark Loop
We apply the solution to the recursion relation for the double-off-shell
quark current to the problem of computing one loop amplitudes with an arbitrary
number of gluons. We are able to compute amplitudes for photon-gluon
scattering, electron-positron annihilation to gluons, and gluon-gluon
scattering via a quark loop in the case of like-helicity gluons. In addition,
we present the result for the one-loop gluon-gluon scattering amplitude when
one of the gluons has opposite helicity from the others.Comment: 31 pages (RevTeX) + 2 uuencoded figures (included),
Fermilab-Pub-93/389-
Electronic-structure modifications induced by surface segregation in La\u3csub\u3e0.65\u3c/sub\u3ePb\u3csub\u3e0.35\u3c/sub\u3eMnO\u3csub\u3e3\u3c/sub\u3e thin films
Using spin-polarized inverse photoemission and X-ray absorption spectroscopy techniques, we show that the electronic structure of La0.65Pb0.35MnO3 thin films depends on the composition at the surface. With a gentle annealing procedure, the surface provides a maximum of 80% spin asymmetry at 0.5 eV above the Fermi level in spite of extensive Pb segregation. A heavily annealed (restructured) surface exhibits a reduced surface ordering temperature of 240 K (compared to the approximately 335 K bulk value) as well as a reduced spin asymmetry value of 40% at 0.5 eV above Fermi energy
The Influence of Solar Flares on the Lower Solar Atmosphere: Evidence from the Na D Absorption Line Measured by GOLF/SOHO
Solar flares presumably have an impact on the deepest layers of the solar
atmosphere and yet the observational evidence for such an impact is scarce.
Using ten years of measurements of the Na D and Na D Fraunhofer
lines, measured by GOLF onboard SOHO, we show that this photospheric line is
indeed affected by flares. The effect of individual flares is hidden by solar
oscillations, but a statistical analysis based on conditional averaging reveals
a clear signature. Although GOLF can only probe one single wavelength at a
time, we show that both wings of the Na line can nevertheless be compared. The
varying line asymmetry can be interpreted as an upward plasma motion from the
lower solar atmosphere during the peak of the flare, followed by a downward
motion.Comment: 13 pages, 7 figure
Phase transition from a to superconductor
We study the phase transition from a to
superconductor using the tight-binding model of two-dimensional cuprates. As
the temperature is lowered past the critical temperature , first a superconducting phase is created. With further reduction of
temperature, the phase is created at temperature
. We study the temperature dependencies of the order parameter,
specific heat and spin susceptibility in these mixed-angular-momentum states on
square lattice and on a lattice with orthorhombic distortion. The
above-mentioned phase transitions are identified by two jumps in specific heat
at and .Comment: Latex file, 5 pages, 6 postscript figures, Accepted in Physical
Review
Directed evolution and predictive modelling of galactose oxidase towards bulky benzylic and unactivated secondary alcohols
Please click Additional Files below to see the full abstract
MHV Rules for Higgs Plus Multi-Gluon Amplitudes
We use tree-level perturbation theory to show how non-supersymmetric one-loop
scattering amplitudes for a Higgs boson plus an arbitrary number of partons can
be constructed, in the limit of a heavy top quark, from a generalization of the
scalar graph approach of Cachazo, Svrcek and Witten. The Higgs boson couples to
gluons through a top quark loop which generates, for large top mass, a
dimension-5 operator H tr G^2. This effective interaction leads to amplitudes
which cannot be described by the standard MHV rules; for example, amplitudes
where all of the gluons have positive helicity. We split the effective
interaction into the sum of two terms, one holomorphic (selfdual) and one
anti-holomorphic (anti-selfdual). The holomorphic interactions give a new set
of MHV vertices -- identical in form to those of pure gauge theory, except for
momentum conservation -- that can be combined with pure gauge theory MHV
vertices to produce a tower of amplitudes with more than two negative
helicities. Similarly, the anti-holomorphic interactions give anti-MHV vertices
that can be combined with pure gauge theory anti-MHV vertices to produce a
tower of amplitudes with more than two positive helicities. A Higgs boson
amplitude is the sum of one MHV-tower amplitude and one anti-MHV-tower
amplitude. We present all MHV-tower amplitudes with up to four
negative-helicity gluons and any number of positive-helicity gluons (NNMHV).
These rules reproduce all of the available analytic formulae for Higgs +
n-gluon scattering (n<=5) at tree level, in some cases yielding considerably
shorter expressions.Comment: 34 pages, 8 figures; v2, references correcte
Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability.
In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence
Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Gluino-Gluon Scattering in Supersymmetric Yang-Mills Theory
We present the two-loop QCD helicity amplitudes for quark-gluon scattering,
and for quark-antiquark annihilation into two gluons. These amplitudes are
relevant for next-to-next-to-leading order corrections to (polarized) jet
production at hadron colliders. We give the results in the `t Hooft-Veltman and
four-dimensional helicity (FDH) variants of dimensional regularization. The
transition rules for converting the amplitudes between the different variants
are much more intricate than for the previously discussed case of gluon-gluon
scattering. Summing our two-loop expressions over helicities and colors, and
converting to conventional dimensional regularization, gives results in
complete agreement with those of Anastasiou, Glover, Oleari and Tejeda-Yeomans.
We describe the amplitudes for 2 to 2 scattering in pure N=1 supersymmetric
Yang-Mills theory, obtained from the QCD amplitudes by modifying the color
representation and multiplicities, and verify supersymmetry Ward identities in
the FDH scheme.Comment: 77 pages. v2: corrected errors in eqs. (3.7) and (3.8) for one-loop
assembly; remaining results unaffecte
- …