32 research outputs found

    Oversampling Successive Approximation Technique for MEMS Differential Capacitive Sensor

    Get PDF
    This paper proposed an over sampling successive approximation (OSSA) technique to build switched-capacitor capacitance-to-voltage convertor (SC-CVC) for readout circuit of MEMS differential capacitive sensor. The readout circuit employing the OSSA technique has significantly improved resistance to common-mode parasitic capacitance of the input terminal of the readout circuit. In the OSSA readout circuit, there are 5 main non-ideal characteristics: holding error, recovery degradation, increment degradation, rise-edge degradation and charge injection which reduce the accuracy and the settling time of the circuit. These problems are explained in detail and their solutions are given in the paper. The OSSA readout circuit is fabricated in a commercial 0.18um BCD process. To show the improvement evidently, a reported traditional readout circuit is also reproduced and fabricated using the same process. Compared with the traditional readout circuit, the proposed readout circuit reduces the affect of common-mode parasitic capacitance on the accuracy of SC-CVC by more than 23.8 dB, reduces power dissipation by 69.3%, and reduces die area by 50%

    Capacitive Touch Panel with Low Sensitivity to Water Drop employing Mutual-coupling Electrical Field Shaping Technique

    Get PDF
    This paper proposes a novel method to reduce the water interference on the touch panel based on mutual-capacitance sensing in human finger detection. As the height of a finger (height >10 mm) is far larger than that of a water-drop (height 10 mm) and low in the low-height space (height <1 mm), the sensing cell can be designed to distinguish the finger from the water-drop. To achieve this density distribution of the electrical field, the mutual-coupling electrical field shaping (MEFS) technique is employed to build the sensing cell. The drawback of the MEFS sensing cell is large parasitic capacitance, which can be overcome by a readout IC with low sensitivity to parasitic capacitance. Experiments show that the output of the IC with the MEFS sensing cell is 1.11 V when the sensing cell is touched by the water-drop and 1.23 V when the sensing cell is touched by the finger, respectively. In contrast, the output of the IC with the traditional sensing cell is 1.32 and 1.33 V when the sensing cell is touched by the water-drop and the finger, respectively. This demonstrates that the MEFS sensing cell can better distinguish the finger from the water-drop than the traditional sensing cell does.National Research Foundation (NRF)Accepted versionThis work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61771363, in part by the China Scholarship Council (CSC) under Grant 201706960042, and in part by the National Research Foundation of Singapore under Grant NRF-CRP11-2012-01

    Face mask integrated with flexible and wearable manganite oxide respiration sensor

    Get PDF
    Face masks are key personal protective equipment for reducing exposure to viruses and other environmental hazards such as air pollution. Integrating flexible and wearable sensors into face masks can provide valuable insights into personal and public health. The advantages that a breath-monitoring face mask requires, including multi-functional sensing ability and continuous, long-term dynamic breathing process monitoring, have been underdeveloped to date. Here, we design an effective human breath monitoring face mask based on a flexible La0.7Sr0.3MnO3 (LSMO)/Mica respiration sensor. The sensor’s capabilities and systematic measurements are investigated under two application scenes, namely clinical monitoring mode and daily monitoring mode, to monitor, recognise, and analyse different human breath status, i.e., cough, normal breath, and deep breath. This sensing system exhibits super-stability and multi-modal capabilities in continuous and long-time monitoring of the human breath. We determine that during monitoring human breath, thermal diffusion in LSMO is responsible for the change of resistance in flexible LSMO/Mica sensor. Both simulated and experimental results demonstrate good discernibility of the flexible LSMO/Mica sensor operating at different breath status. Our work opens a route for the design of novel flexible and wearable electronic devices
    corecore