127 research outputs found

    Overview of Analytical Techniques for Herbicides in Foods

    Get PDF

    Carbon Nanotubes in Biomedicine and Biosensing

    Get PDF

    Water‐Rich Biomimetic Composites with Abiotic Self‐Organizing Nanofiber Network

    Full text link
    Load‐bearing soft tissues, e.g., cartilage, ligaments, and blood vessels, are made predominantly from water (65–90%) which is essential for nutrient transport to cells. Yet, they display amazing stiffness, toughness, strength, and deformability attributed to the reconfigurable 3D network from stiff collagen nanofibers and flexible proteoglycans. Existing hydrogels and composites partially achieve some of the mechanical properties of natural soft tissues, but at the expense of water content. Concurrently, water‐rich biomedical polymers are elastic but weak. Here, biomimetic composites from aramid nanofibers interlaced with poly(vinyl alcohol), with water contents of as high as 70–92%, are reported. With tensile moduli of ≈9.1 MPa, ultimate tensile strains of ≈325%, compressive strengths of ≈26 MPa, and fracture toughness of as high as ≈9200 J m−2, their mechanical properties match or exceed those of prototype tissues, e.g., cartilage. Furthermore, with reconfigurable, noncovalent interactions at nanomaterial interfaces, the composite nanofiber network can adapt itself under stress, enabling abiotic soft tissue with multiscale self‐organization for effective load bearing and energy dissipation.Water‐rich biomimetic composites from aramid nanofibers interlaced with poly(vinyl alcohol) emulate the collagen–proteoglycan network in load‐bearing soft tissues. The hydrogen bonding between stiff nanofibers and soft polymers affords synergistic stiffening and toughening, allowing the nanofiber network to self‐organize under stress for effective load bearing and energy dissipation. Their mechanics, biocompatibility, and high water content permit utilization as load‐bearing biomaterials and for other applications including durable high‐transport‐rate membranes, membranes in water desalination, fuel cells, and batteries.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141174/1/adma201703343-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141174/2/adma201703343_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141174/3/adma201703343.pd

    Effects of Fermentation Temperature and Time on the Physicochemical and Sensory Characteristics of Douchi

    Get PDF
    In this paper studies were made to generate data on the physicochemical and sensory characteristics of douchi prepared by fermentation at different temperatures for variable time prior to mechanical drying. Fermentation was carried out at 20, 30 and 40 °C for 12, 24, 48 and 72 h prior to drying at 50 °C. Physiochemical and sensory characteristics were monitored. The results show that fermentation conditions of 30 °C for 24 h and 30 °C for 48 h bring about more acidic douchi with superior sensory characteristics

    Sensitive Detection of Silver Ions Based on Chiroplasmonic Assemblies of Nanoparticles

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100155/1/adom201300148.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/100155/2/adom201300148-sup-0001-S1.pd

    Plasmonic nanoparticles with supramolecular recognition

    Get PDF
    Even after more than two decades of intense studies, the research on self-assembly processes involving supramolecular interactions between nanoparticles (NPs) is continuously expanding. Plasmonic NPs have attracted particular attention due to strong optical, electrical, biological, and catalytic effects they are accompanied with. Surface plasmon resonance characteristics of plasmonic NPs and their assemblies enable fine-tuning of these effects with unprecedented dynamic range. In turn, the uniquely high polarizability of plasmonic nanostructures and related optical effects exemplified by surface-enhanced Raman scattering and red–blue color changes give rise to their application to biosensing. Since supramolecular interactions are ubiquitous in nature, scientists have found a spectrum of biomimetic properties of individual and assembled NPs that can be regulated by the layer of surface ligands coating all NPs. This paradigm has given rise to multiple studies from the design of molecular containers and enzyme-like catalysts to chiroplasmonic assemblies. Computational and theoretical advances in plasmonic effects for geometrically complex structures have made possible the nanoscale engineering of NPs, assemblies, and supramolecular complexes with biomolecules. It is anticipated that further studies in this area will be expanded toward chiral catalysis, environmental monitoring, disease diagnosis, and therapy

    Effects of Fermentation Temperature and Time on the Physicochemical and Sensory Characteristics of Douchi

    Get PDF
    In this paper studies were made to generate data on the physicochemical and sensory characteristics of douchi prepared by fermentation at different temperatures for variable time prior to mechanical drying. Fermentation was carried out at 20, 30 and 40 °C for 12, 24, 48 and 72 h prior to drying at 50 °C. Physiochemical and sensory characteristics were monitored. The results show that fermentation conditions of 30 °C for 24 h and 30 °C for 48 h bring about more acidic douchi with superior sensory characteristics

    Present and Future of Surface-Enhanced Raman Scattering.

    Get PDF
    The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article

    Virus-Free and Live-Cell Visualizing SARS-CoV-2 Cell Entry for Studies of Neutralizing Antibodies and Compound Inhibitors

    Get PDF
    新型冠状病毒SARS-CoV-2在全球蔓延,给全球公共卫生带来严重威胁。快速研制疫苗、抗体和治疗药物成为科学界面临的重大挑战。由于SARS-CoV-2的高度传染性,采用病毒感染模型进行中和抗体及小分子抑制剂的药效评估需要在高等级生物安全实验室中进行,且常需要数天时间才能完成检测,限制了抗体和药物筛选的效率。发展快速、可视、不依赖于活病毒的新冠病毒入胞检测探针和细胞模型,对于加速新冠病毒抗体和药物的研究有重要意义。夏宁邵教授团队通过CHO真核表达系统高效表达制备出C端融合抗酸荧光蛋白Gamillus的重组新冠病毒spike蛋白STG。STG经SEC分子筛和冷冻电镜确认呈现与天然病毒刺突高度相似的三聚体结构,且与ACE2有很高的亲和力(18.2nM)。STG具备良好的细胞相容性和荧光性质,研究者进一步开发了可定量测定感染恢复期血清、疫苗免疫血清中和抗体(入胞阻断抗体)水平的CSBT检测方法。除了抗体检测评估方面的应用外,该研究发展的探针和模型还可用于筛选分析抑制新冠病毒入胞及胞内转运的小分子化合物。 我校博士后张雅丽,博士生王邵娟、巫洋涛,博士后侯汪衡、袁伦志和深圳市第三人民医院沈晨光博士为共同第一作者。厦门大学夏宁邵教授、袁权教授、程通教授为该论文共同通讯作者。The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system,a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process is developed.In ACE2-expressing cells, it is found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.This study was supported by National Natural Science Foundation of China (81993149041 for N.X.; 81902057 for Y.Z.; 81871316 and U1905205 for Q.Y.), the National Science and Technology Major Project of Infectious Diseases (No. 2017ZX10304402‐002‐003 for T.C. and No. 2017ZX10202203‐009 for Q.Y.), the National Science and Technology Major Projects for Major New Drugs Innovation and Development (No. 2018ZX09711003‐005‐003 for T.C.), the Science and Technology Major Project of Fujian (2020YZ014001), the Science and Technology Major Project of Xiamen (3502Z2020YJ01), and the Guangdong Basic and Applied Basic Research Foundation (2020A1515010368 for C.S.). 该研究得到了国家自然科学基金、传染病防治国家科技重大专项、福建省应急科技攻关项目和厦门应急科技攻关项目的支持
    corecore