9,281 research outputs found

    Current status and perspectives on anaerobic co-digestion and associated downstream processes

    Get PDF
    © The Royal Society of Chemistry. Anaerobic co-digestion (AcoD) has the potential to utilise spare digestion capacity at existing wastewater treatment plants to simultaneously enhance biogas production by digesting organic rich industrial waste and achieve sustainable organic waste management. While the benefits of AcoD regarding biogas production and waste management are well established, the introduction of a new organic waste (i.e. co-substrate) with different chemical composition compared to residential sewage sludge is expected to impact on not only the anaerobic digestion process itself but also downstream processing of biogas and digestate. This work critically evaluates the potential impact (both positive and negative) of co-digestion on key downstream processes in the context of AcoD of sewage sludge and organic waste. AcoD can potentially lead to significant changes in biogas quality, digestate dewaterability, biosolids odour and the nutrient balance within the overall wastewater treatment process. The literature reviewed here suggests that effective management of these impacts can enhance the economic and environmental benefits of AcoD. Potential techniques to manage the impact of AcoD on downstream processing include co-substrate selection to minimise sulphur content, co-substrate pretreatment to improve dewaterability, process optimisation to minimize downstream impacts, biological desulphurisation of biogas, and side stream nutrient recovery. These techniques have been investigated and in some cases successfully applied for conventional anaerobic digestion. Nevertheless, further research is needed to adapt them for AcoD. In particular, the issue of nutrient accumulation due to AcoD can be seen as an opportunity to utilise recently commercialised technologies (e.g. Phosnix and Ostara) and currently emerging processes (e.g. forward osmosis and electrodialysis) for phosphorus recovery from food waste and wastewater

    IFN-gamma is associated with risk of Schistosoma japonicum infection in China.

    No full text
    Before the start of the schistosomiasis transmission season, 129 villagers resident on a Schistosoma japonicum-endemic island in Poyang Lake, Jiangxi Province, 64 of whom were stool-positive for S. japonicum eggs by the Kato method and 65 negative, were treated with praziquantel. Forty-five days later the 93 subjects who presented for follow-up were all stool-negative. Blood samples were collected from all 93 individuals. S. japonicum soluble worm antigen (SWAP) and soluble egg antigen (SEA) stimulated IL-4, IL-5 and IFN-gamma production in whole-blood cultures were measured by ELISA. All the subjects were interviewed nine times during the subsequent transmission season to estimate the intensity of their contact with potentially infective snail habitats, and the subjects were all re-screened for S. japonicum by the Kato method at the end of the transmission season. Fourteen subjects were found to be infected at that time. There was some indication that the risk of infection might be associated with gender (with females being at higher risk) and with the intensity of water contact, and there was evidence that levels of SEA-induced IFN-gamma production were associated with reduced risk of infection

    Genotyping isolates of the entomopathogenic fungus Beauveria bassiana sensu lato by multi-locus polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis

    Get PDF
    Multi-locus denaturing gradient gel electrophoresis (DGGE) analysis was developed to investigate the genotypes of Beauveria bassiana sensu lato. Sensitive tests indicated all isolates with one or more nucleotide differences at EF-1 and Bloc could be distinguished by DGGE except for one pair of strains that differed at four nucleotide positions. Ten, twelve and five genotypes were identified at the EF-1, Bloc and ITS locus, respectively, among seventeen isolates, which together differentiated 13 genotypes. These results demonstrated that multi-locus DGGE is a potentially useful molecular marker for genotyping, identifying and tracking the fates of experimentally released strains of B. bassiana sensu lato. Moreover, by multi-locus DGGE for scanning B. bassiana sensu lato isolates with different multilocus sequences, genetic diversity of B. bassiana sensu lato was effectively investigated with substantially reduced time and cost in subsequent DNA sequencing

    Non-steady state operation of polymer/TiO2 photovoltaic devices

    Get PDF
    We present data on the initial period of operation of Gilch-route NMH-PPV/TiO2 composite solar cells (CSCs) which show that during this period the CSCs operate in a non-steady state regime. The behavior is complex and may include a gradual rise of the open circuit voltage (V-oc) and of the short-circuit current density (J(sc)) with time, a passage through a maximum of either or both parameters, and even a sign reversal. The mechanisms most probably contributing to the transient processes are: i) diffusion driven redistribution of charges resulting in the build up of a quasi steady state charge density profile across the device; ii) photo-doping resulting in a relatively slow increase of the average charge carrier concentration and consequently of the conductivity of the device. The latter is responsible for a strong decrease in V-oc, and is evidenced by the significant increase in dark current after device illumination

    Vulnerable Users’ Perceptions of Transport Technologies

    Get PDF
    As the global population continues to grow, age and urbanize, it is vital to provide accessible transport so that neither ageing nor disability constitute barriers to social inclusion. While technology can enhance urban access, there is a need to study the ways by which transport technologies - real-time information, pedestrian navigation, surveillance, and road pricing - could be more effectively adopted by users. The reason for this is that some people, and particularly vulnerable populations, are still likely to reluctantly use (or even avoid using) technologies perceived as 'unknown' and 'complicated'. Based on evidence from British and Swedish case studies on older people's perceptions of the aforementioned transport technologies, as well as on a Swedish case study of visually impaired people's perceptions, this article makes the case that technology is only one tool in a complex socio-technical system, and one which brings challenges. The authors also suggest that although vulnerable populations are not homogeneous when expressing attitudes towards transport technologies, their assessment criteria tend to be 'pro-social' as they usually consider that the societal benefits outweigh the personal benefits. Emphasising aspects linked to the technologies' pro-social potential or relevance to the individual user could increase acceptance

    Impact of Phenanthrene on Organic Acids Secretion and Accumulation by Perennial Ryegrass, Lolium perenne L., Root

    Get PDF
    A solution culture experiment was performed to investigate the impact of phenanthrene (PHE) on organic acids secretion and accumulation by Lolium perenne L. root. Data showed that, oxalic acid was the dominant composition of organic acids in root and root exudates. In root exudates, increased levels of PHE resulted in higher oxalic acid and its secrete proportion; oxalic acid arranged from 3.00 to 4.72 mg/g FW under spiked PHE treatments, in control, it was 2.33 mg/g FW. In root, oxalic acid rose to 25.61 mg/g FW at 1 mg/L PHE treatment, while the PHE concentration was continuously increasing, organic acids in root decreased

    Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA)

    Get PDF
    The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD∼1 μM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy. © 2013 Shen et al

    Planet formation in Binaries

    Full text link
    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions to this apparent paradox are presented. The last part of our review presents a thorough description of the problem of planet habitability, for which the binary environment creates a complex situation because of the presence of two irradation sources of varying distance.Comment: Review chapter to appear in "Planetary Exploration and Science: Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip, Springer (v2, numerous typos corrected
    corecore