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Abstract A solution culture experiment was performed

to investigate the impact of phenanthrene (PHE) on organic

acids secretion and accumulation by Lolium perenne L.

root. Data showed that, oxalic acid was the dominant

composition of organic acids in root and root exudates. In

root exudates, increased levels of PHE resulted in higher

oxalic acid and its secrete proportion; oxalic acid arranged

from 3.00 to 4.72 mg/g FW under spiked PHE treatments,

in control, it was 2.33 mg/g FW. In root, oxalic acid rose to

25.61 mg/g FW at 1 mg/L PHE treatment, while the PHE

concentration was continuously increasing, organic acids in

root decreased.

Keywords Ryegrass � Organic acids � Phenanthrene �
Root exudates

Polycyclic aromatic hydrocarbons (PAHs) are a series of

persistent organic pollutants which are well known for their

carcinogenic and mutagenic properties (Menzie et al. 1992)

and they are widespread in the environment from several

sources including artificial origins, such as incomplete

combustion of fossil fuels, pyrolysis of organic materials,

exhaust emission of vehicles and natural activities, such as

volcano eruption, microbial metabolism, etc. (Thiele and

Brümmer 2002). Over the last few decades, the researchers

paid a lot of attention to the phytoremediation using dif-

ferent plants both in contaminated soil (Aprill and Sims

1990; Wilson and Jones 1993; Joner and Leyval 2003; Gao

and Zhu 2004) and water (Gao et al. 2006). As the high

lipophilic nature of PAHs, most of the researches proposed

that plant uptake, metabolism and translocation are not the

major end-result of the PAHs in contaminated soils (Wild

and Jones 1992; Simonich and Hites 1995; Gao and Zhu

2004). However, the dissipation of soil organic pollutant is

significantly enhanced by the presence of plants; this

conclusion has also been proved by several reports (e.g.

Reilley et al. 1996; Binet et al. 2000). This promotion can

be explained from the factors below: (1) the root exudates

have a large amount of easily degradable organic com-

pounds, which can not only increase the quantity of soil

microbe but also enhance the microbial degradation

activity by means of co-metabolism (Rentz et al. 2005;

Parrish et al. 2005); (2) apart from the nutrients, there are

several enzymes in the root exudates, some of them, such

as polyphenol oxidase and dehydrogenase can directly

participate in the PAHs degradation (Liu et al. 2004); (3)

plant root can change the physical chemical properties of

soil, consequently improving bioavailability and dissipa-

tion of PAHs. The first two effects have already been

intensively studied in recent years, while the third one is

not so clear yet. Now, in short, the plant root exudates play

an important role in PAHs phytoremediation.

Some recent study shows that organic acids affect

desorption of organic pollutant in soil and enhance its

bioavailability significantly (White 2002; Luo et al. 2006).

As an important composition of root exudates, organic

acids in root exudates have been researched extensively

under the heavy metal stress (Huang et al. 1998; Xu et al.

2007), in contrast, they were poorly understood in PAHs

contaminants. To explore organic acids in root exudates in

response to PAHs contaminants, phenanthrene (PHE) as

typical PAHs was selected. We chose Lolium perenne L.

(perennial ryegrass) as our plant material because: (1) the
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amount of root exudates was quite considerable (Meharg

and Killham 1995); (2) ryegrass was in common use of

researches on PAHs phytoremediation. Our present study

used a solution culture experiment to test: (1) the effect of

spiked PHE solutions on root viability; (2) the changes of

low molecular weight organic acids in root exudates under

the PHE stress; (3) the changes of low molecular weight

organic acids accumulation in plant.

Materials and Methods

Phenanthrene ([97%) was purchased from Aldrich

Chemical Co., and methanol was used as co-solvent in

culture solution. PHE was first dissolved in methanol to

make a stock solution. In culture solution, certain volume

of stock solution was added into nutrient solution to make

the final concentration of PHE at 1, 2, 4, 8 mg/L. The

concentrations of methanol in all solutions were adjusted to

0.1%, and a control, which only has 0.1% methanol in

nutrient solution, was designed to avoid the effect of

methanol. Considering the solubility of PHE in solution at

25�C is only 1.18 mg/L, the solutions were homogenized

by ultrasonication for 2 h, and the bath temperature was

kept below 40�C. All distilled water in this experiment was

prepared by a Milli-Q Biocel system (USA) and microbes

were strictly controlled during the whole procedure.

Perennial ryegrass (polim) seeds were surface sterilized

for 20 min with 3% hydrogen peroxide, and were washed

with distilled water for several times. The sterilized seeds

germinated for about 2 weeks on germination discs,

nutrient solutions were changed every 3 days. When the

seedlings were about 15 cm tall, they were transferred to

the beakers, with each beaker containing ten seedlings, and

the seedlings were fastened loosely on a plastic board,

which had been perforated to ensure that the roots were all

submerged and the stems were just out of the solution.

Each beaker contained 0.3 L half strength Hogland’s

nutrients solution, and the pH was adjusted to 5.5 before

use. After being pre-cultured for 3 days, the solutions were

changed by nutrient solutions, which contained spiked

PHE; the beakers were packed with silver paper to avoid

the photolysis of PHE. The whole incubation experiment

was conducted in a phytotron where the day and night

cycle was 16:8 h and room temperature kept at 22:15�C

and the culture solutions were changed every 3 days.

After being treated by PHE for 6 days, the seedlings

were harvested, at the same time the culture solutions were

tested for pH by an ORION mode 868 digital acidometer

(USA).

Root exudates were also collected after 6 days’ treat-

ment. Endosperms of the seedlings were wiped off before

collection, the roots were washed carefully by distilled

water, and then submerged into amber cuvettes containing

quantificational distilled water. The collection procedure

was done in the phytotron under illumination for 2 h.

Afterwards, the plant roots were harvested immediately

for inner organic acids extraction. The root exudates were

kept in a -20�C refrigerator and analyzed as soon as

possible.

Organic acids in root were extracted by water. Roots

were cut down just after the forenamed collection and

weighing. Then, they were homogenized in a glass mortar

with distilled water, the homogenate was transferred into

glass tube and kept in 80�C water bath for 20 min to extract

organic acids, and then, distilled water was added to make

the final volume at 5 mL. The extracts were finally cen-

trifuged under 20,000g for 20 min; the supernatants were

used for HPLC analysis. These samples were also stored in

refrigerator and analyzed as soon as possible.

Organic acids were analyzed with an Angilent 1100

HPLC series consisting of G1311A quart pump, G1379A

degasser, G1316A column thermostat, G1315B DAD

detector, G1328B manual injector and a XB-18 column

(4.6 9 250 mm, 5 lm particle size). 25 mmol H3PO4–

KH2PO4 buffer was used as mobile phase at a flow rate of

0.7 mL/min; the chromatography was performed at 30�C.

All the organic acids were detected at 210 nm, the samples

and solutions used in HPLC analysis were filtered by

0.45 lm cellulose nitrate membranes beforehand. We used

multilevel calibration and peak area calculation method

with a series of fresh standard solutions to qualitatively and

quantitatively analyze organic acids.

2,3,5-Triphenyltetrazolium chloride (TTC) reduction

activity assay performed following the method of Nayyar

et al. (2005) with some modification. After harvest, the root

was carefully washed and blotted; each replicate had two

same weight samples: a heated sample (which was incu-

bated in 95�C water at the very start) and a treated sample,

all the samples were put in the tubes which contained

10 mL 50 mM phosphate buffer (pH 7.0) with 0.4% (w/v)

TTC. These tubes were incubated in a water bath of 37�C

for 2 h in darkness, and then 2 mL of 1 mol/L sulfuric acid

was added to cease the reaction, after the solutions were

drained, the root was homogenized with 10 mL ethyl

acetate. The absorbance of extraction was recorded at

485 nm after filtration. The TTC reduction was measured

by a standard curve and TTC reduction activity was cal-

culated by the following formula:

2,3,5-Triphenyltetrazolium chloride reduction activ-

ity = (TT - TH)/W 9 T, where TT is the TTC reduction of

treated sample, TH is of heated sample, W is the fresh

weight of sample and T for 2 h.

Each treatment has three replicates. All the statistical

analyses were conducted in SPSS v.10.0. Treatment effects

were tested by an analysis of variance (ANOVA), and the
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significance of differences between treatments was deter-

mined by the least significant difference (LSD) test.

Results and Discussion

The pH of culture solutions after incubation was shown in

Table 1. All the solutions had a decrease in pH. This

decrease was caused by the integrated effect of both root

absorbability and root exudation. In this experiment, the

differences of pH between PHE treatments and control

were significant under the least significant difference test

(p \ 0.05).

In all root exudates samples, oxalic, lactic, malic and

acetic acids were detected, of which oxalic acid exceeded

98% of the total acids, it was the dominant composition of

the organic acids in ryegrass root exudates and the com-

position and proportion showed no significant change with

the increasing of PHE concentration.

The detected limitations of oxalic acid in this experi-

ment was 1.43 ng, and its recovery averaged 103.2%

(n = 10, RSD \2.78%).

As showed in Table 2, the concentrations of oxalic acid

in root exudates were higher than control, and oxalic acid

rose with the increasing of PHE concentration. The dif-

ferences between all treatments and control were signifi-

cant (p \ 0.05).

The organic acids composition in root had the same

character with root exudates of ryegrass; oxalic acid was

also the dominant part as a proportion exceeded 97%. Its

concentration had a peak value at 1 mg/L PHE treatment.

As PHE continuously increasing, oxalic acid in root had a

decrease trend, these decreases were significant compared

to 1 mg/L PHE treatment, but not significant compared to

control except for the highest treatment.

To research changes of oxalic acid metabolism and

secretion under spiked PHE, we used two indexes: total

oxalic acid (TA) and secrete proportion (SP).

TA = oxalic acid accumulated by root ? oxalic acid

secreted by root;

SP = oxalic acid secreted by root/oxalic acid accumu-

lated in root.

Figure 1 showed their changes under spiked PHE. TA

had a significant increase (p \ 0.05) at 1 mg/L PHE

treatment, and under other concentrations TA showed no

significant difference to control. However, SP rose con-

tinuously as the PHE concentrations increasing, from

11.7% at 1 mg/L to 25.2% at 8 mg/L PHE treatment, and

oxalic acid secrete proportion under all PHE concentrations

were higher then control (10.5%).

Organic acids are of special importance in plant not only

at the cellular level but also at the whole plant level from

multi-aspects. They are related to several biochemical

pathways, such as photosynthesis, formation of precursors

for amino-acid biosynthesis and modulating adaptation in

Table 1 pH of culture solutions after ryegrass incubation

Phenanthrene concentration (mg/L) 0 1 2 4 8

pH 5.08 ± 0.04b 4.87 ± 0.15a 4.84 ± 0.07a 4.77 ± 0.07a 4.93 ± 0.11a

Each value is mean ± SD (n = 3)

Values marked by different letter means significant difference between them under the least significant difference (LSD) test (p \ 0.05)

Fig. 1 Total oxalic acid of root and its secrete proportion under

different PHE treatments. TA = oxalic acid accumulated by root ?

oxalic acid secreted by root; SP = oxalic acid secreted by root/oxalic

acid accumulated in root. Capital letter showed the least significant

difference (LSD) test result of TA and lowercase letter showed the

result of SP; values marked by different letter means significant

difference between them under the least significant difference (LSD)

test (p \ 0.05). Each value is mean ± SD (n = 3)

Table 2 Oxalic acid secreted and accumulated by root

Phenanthrene

concentration (mg/L)

Oxalic acid in root

exudates (mg/g FW)

Oxalic acid in root

(mg/g FW)

0 2.33 ± 0.23a 22.78 ± 2.35B

1 3.00 ± 0.15b 25.61 ± 1.97C

2 3.28 ± 0.30b 20.40 ± 1.79AB

4 4.14 ± 0.44bc 20.49 ± 2.15AB

8 4.72 ± 0.32c 18.85 ± 0.46A

Values marked by different letter in a column means significant dif-

ference between them under the least significant difference (LSD) test

(p \ 0.05)

Each value is mean ± SD (n = 3)
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root to the environment stress, such as nutrient deficiencies,

heavy metal tolerance, salt and alkaline stress, plant-

microbe interactions, etc. (José et al. 2000). Researches

proved that environmental stress could induce the quantity

and composition changes of organic acids both in plant

accumulation and root exudates (Landsberg 1981; Alhen-

dawi et al. 1997; Yan et al. 2006).

In this experiment, oxalic acid was the dominant com-

position of organic acids accumulated in ryegrass root, it

made up 97% of the total organic acids in root, other acids

been detected including malic, lactic and acetic acids only

accounted for 3% together. Under PHE treatments (range

from 1 to 8 mg/L), the composition did not have significant

change. Data showed that, the oxalic acid accumulated in

root increased significantly at 1 mg/L PHE, and then there

was a decrease as PHE further increasing, while SP (oxalic

acid secreted by root/oxalic acid accumulated in root)

increased continuously as PHE rising, considering the

increased oxalic acid in root exudates, the decrease of

oxalic acid in root may be caused by the enhanced secretion.

Using TA as a index of oxalic acid metabolism in root, we

found that TA varied from 23.57 to 28.95 mg/g, the peak

value also appeared at 1 mg/L PHE treatment, we presumed

that oxalic acid metabolism is enhanced by relatively low

concentration of PHE, this may be associated with the

promotion of plant growth, evidence also shown in plant

biomass. However, as a whole, PHE treatment in this study

seemed to have little impact on root oxalic acid metabolism.

The composition of organic acids in root exudates had

the same character with which accumulated in root, oxalic

acid made up 98% of the total organic acids. Oxalic acid in

root exudates increased significantly under PHE stress than

control (ranged from 28.7% to 106.8%), simultaneously,

the secrete proportion of oxalic acid also increased as PHE

concentration rising (ranged from 13.9% to 23.9%), oxalic

acid secretion by root was enhanced as the PHE concen-

tration increasing. Data analysis showed that there was a

significant positive relationship between oxalic acid in root

exudates and PHE concentration (r = 0.882, p \ 0.01), SP

(secrete proportion) also had a significant positive rela-

tionship with PHE (r = 0.929, p \ 0.01). This result sug-

gested that PHE application could enhance the organic

acids secretion by root, but more researches were needed to

reveal the mechanism.

Because of the physicochemical property of PAHs, its

transport and bioavailability may be drastically determined

by organic compounds in soil, humic acids are the major

part of natural organic matter (NOM) and dominant sorbent

of organic pollutants in soil, Ke et al. (2003) revealed that

adding humic acid into contaminated sediments decrease

both the pyrene dissipation in sediments and plant uptake.

According to researches, organic acids in plant root exu-

dates are able to disaggregate soil organic fractions into

low apparent molecular size and mobilize the soil organic

fractions (Nardi et al. 1997; Jones 1998). Evidences also

show that organic acids and their salts can increase

desorption and bioavailability of organic pollutants in soil

(White 2002; Luo et al. 2006). Ample researches have

already proved that root exudates are able to enhance the

dissipation of organic pollutants in soil (Haby and Crowley

1996; Burken and Schnoor 1996; Yoshitomi and Shann

2001), most of the researchers attributed this enhancing to

the stimulation of microbial degradation by root exudates,

as a supplement, we speculated that the increased organic

acids secretion may also play an important role in organic

pollutant phytoremediation via enhanced organic pollutants

desorption.

As the data given by Table 3, the root TTC reduction

activity varied slightly at spiked PHE treatments. At 4 mg/L

PHE treatment, root TTC reduction activity increased to

0.82 mg/h g FW, and under other concentrations, they had

no differences compared to control.

The metabolism of PAHs in organism can generate

reactive oxygen species (ROS), which may induce the

oxidative damages (Choi and Oris 2000; Babu et al. 2001).

To evaluate the damage of PHE treatment on ryegrass

growth and tissue viability, root TTC reduction activity and

plant biomass were used as indexes in this experiment.

TTC reduction is performed by the mitochondrial dehy-

drogenases in cells (Rich et al. 2001; Tanaka et al. 2005); it

was regarded as an indicator of mitochondrial capacity and

plant tissue viability. Researches also proved that, TTC

reduction activity is a sensible indicator of oxidative

damage; it can indicate the lipid peroxidation and cell

membrane permeability sensitively (Upadhyaya and Cla-

dwell 1993; Nayyar et al. 2005). In this study, the root TTC

reduction activity varied slightly from 1 to 8 mg/L PHE

treatment, it varied from 0.72 to 0.82 mg/g h FW, which

Table 3 2,3,5-Triphenyltetrazolium chloride (TTC) reduction activity of the root

Phenanthrene concentration (mg/L) 0 1 2 4 8

2,3,5-Triphenyltetrazolium chloride (TTC) reduction activity

(mg/h g FW)

0.77 ± 0.05a 0.74 ± 0.07a 0.76 ± 0.04a 0.82 ± 0.04b 0.72 ± 0.02a

Values marked by different letter in a column mean significant difference between them under the least significant difference (LSD) test

(p \ 0.05)

Each value is mean ± SD (n = 3)
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were all had no significant decrease compared with control

(0.77 mg/g h FW). These data indicated the viability of

ryegrass root was not inhibited by PHE and there was no

significant membrane damage of root cell under PHE

treatments at the concentrations set in this study. The plant

appearance also suggested ryegrass had high tolerance of

PHE.

Lacking of research on the root exudates diversification

under PAHs stress, this experiment was just a preparatory

work, further research will be conducted to reveal not only

the mechanism of increased organic acids secretion but

also the relationship between organic acids and PAHs

desorption.
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