15 research outputs found

    Giant landslide displacement analysis using a point cloud set conflict technique: a case in Xishancun landslide, Sichuan, China

    Get PDF
    Landslides, threatening millions of human lives, are geological phenomena on earth, occurred frequently. An increasing number of techniques are being used to monitor landslide deformation. Among th..

    The Voice of Drug Consumers: Online Textual Review Analysis Using Structural Topic Model

    No full text
    Many web-based pharmaceutical e-commerce platforms allow consumers to post open-ended textual reviews based on their purchase experiences. Understanding the true voice of consumers by analyzing such a large amount of user-generated content is of great significance to pharmaceutical manufacturers and e-commerce websites. The aim of this paper is to automatically extract hidden topics from web-based drug reviews using the structural topic model (STM) to examine consumers’ concerns when they buy drugs online. The STM is a probabilistic extension of Latent Dirichlet Allocation (LDA), which allows the consolidation of document-level covariates. This innovation allows us to capture consumer dissatisfaction along with their dynamics over time. We extract 12 topics, and five of them are negative topics representing consumer dissatisfaction, whose appearances in the negative reviews are substantially higher than those in the positive reviews. We also come to the conclusion that the prevalence of these five negative topics has not decreased over time. Furthermore, our results reveal that the prevalence of price-related topics has decreased significantly in positive reviews, which indicates that low-price strategies are becoming less attractive to customers. To the best of our knowledge, our work is the first study using STM to analyze the unstructured textual data of drug reviews, which enhances the understanding of the aspects of drug consumer concerns and contributes to the research of pharmaceutical e-commerce literature

    Role of Vascular Endothelial Cells in Disseminated Intravascular Coagulation Induced by Seawater Immersion in a Rat Trauma Model

    Get PDF
    Trauma complicated by seawater immersion is a complex pathophysiological process with higher mortality than trauma occurring on land. This study investigated the role of vascular endothelial cells (VECs) in trauma development in a seawater environment. An open abdominal injury rat model was used. The rat core temperatures in the seawater (SW, 22°C) group and normal sodium (NS, 22°C) group declined equivalently. No rats died within 12 hours in the control and NS groups. However, the median lethal time of the rats in the SW group was only 260 minutes. Among the 84 genes involved in rat VEC biology, the genes exhibiting the high expression changes (84.62%, 11/13) on a qPCR array were associated with thrombin activity. The plasma activated partial thromboplastin time and fibrinogen and vWF levels decreased, whereas the prothrombin time and TFPI levels increased, indicating intrinsic and extrinsic coagulation pathway activation and inhibition, respectively. The plasma plasminogen, FDP, and D-dimer levels were elevated after 2 hours, and those of uPA, tPA, and PAI-1 exhibited marked changes, indicating disseminated intravascular coagulation (DIC). Additionally, multiorgan haemorrhagia was observed. It indicated that seawater immersion during trauma may increase DIC, elevating mortality. VECs injury might play an essential role in this process

    Role of Vascular Endothelial Cells in Disseminated Intravascular Coagulation Induced by Seawater Immersion in a Rat Trauma Model

    No full text
    Trauma complicated by seawater immersion is a complex pathophysiological process with higher mortality than trauma occurring on land. This study investigated the role of vascular endothelial cells (VECs) in trauma development in a seawater environment. An open abdominal injury rat model was used. The rat core temperatures in the seawater (SW, 22°C) group and normal sodium (NS, 22°C) group declined equivalently. No rats died within 12 hours in the control and NS groups. However, the median lethal time of the rats in the SW group was only 260 minutes. Among the 84 genes involved in rat VEC biology, the genes exhibiting the high expression changes (84.62%, 11/13) on a qPCR array were associated with thrombin activity. The plasma activated partial thromboplastin time and fibrinogen and vWF levels decreased, whereas the prothrombin time and TFPI levels increased, indicating intrinsic and extrinsic coagulation pathway activation and inhibition, respectively. The plasma plasminogen, FDP, and D-dimer levels were elevated after 2 hours, and those of uPA, tPA, and PAI-1 exhibited marked changes, indicating disseminated intravascular coagulation (DIC). Additionally, multiorgan haemorrhagia was observed. It indicated that seawater immersion during trauma may increase DIC, elevating mortality. VECs injury might play an essential role in this process

    Construction of tissue-engineered vascular grafts with enhanced patency by integrating heparin, cell-adhesive peptide, and carbon monoxide nanogenerators into acellular blood vessels

    No full text
    Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs
    corecore