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ABSTRACT
Landslides, threatening millions of human lives, are geological
phenomena on earth, occurred frequently. An increasing number
of techniques are being used to monitor landslide deformation.
Among these, Light Detection and Ranging (LiDAR) stands out for
its high efficiency and accuracy in displacement detection, parti-
cularly for giant landslides. In this work, we collected two temporal
datasets of terrain laser scanning and proposed a flowchart for
giant landslide displacement analysis using the point cloud set
conflict（PCSC） technique. First, the terrestrial points were
obtained by performing registration and off-terrain point filtering.
Second, the landslide displacement field was acquired using the
proposed method based on its surface roughness. The displace-
ment results from our established methodological system are
comparable with the ones of Interferometric Synthetic Aperture
Radar (InSAR)-derived deformations. The differences estimated
from two systems are at the centimetre level. Cross-analysis on
the trigger factor with landslide occurred mechanism could be
achieved based on the results as well. Therefore, this work pro-
vides a novel system to analyse the displacement of a giant land-
slide in the future study.
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1. Introduction

Landslides, geological hazardous phenomena occurring frequently worldwide, have
been threatening millions of human lives and various types of infrastructures (Guzzetti
et al. 2012). Monitoring towards it is particularly important for understanding the
characteristics and evolutionary trends (Huang et al. 2015). Light Detection and
Ranging (LiDAR) is a rapidly developing technique for landslide monitoring. Compared
with traditional in-situ surveying techniques, such as Global Positioning System (GPS)
(Travelletti et al. 2012; Malet, Maquaire, and Calais 2002), or remote sensing techniques,
such as Interferometry Synthetic Aperture Radar (InSAR) (Herrera et al. 2009; Greif and
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Vlcko 2012), multi-temporal LiDAR stands out for its low cost and high effectiveness as
millions of points could be obtained with only several surveys (Tapete et al. 2015; Szabó
et al. 2016). Because of the development of full waveform laser scanning, multi-temporal
LiDAR can be used to extract terrain points even in some vegetation-dense areas,
particularly mountainous regions (Ferraz, Mallet, and Chehata 2016). Therefore, surface
change detection of landslides based on LiDAR is becoming prevalent in landslide
movement studies (Jaboyedoff et al. 2012; Ghuffar et al. 2013).

Methods for change detection of LiDAR are still under development. Comparisons of
pre- and post-event digital terrain models are initially carried out on the LiDAR datasets
(Dewitte et al. 2008). Models with detailed information could be acquired due to abundant
point data available from LiDAR; thus, minor changes could be detected after comparisons
(Petschko, Bell, and Glade 2016; Pradhan and Abdulwahid 2017). However, object identi-
fication in this method still requires extensive labour to construct the entire model, which
leads to a high price and consumes large amounts of time particularly for giant landslides
(Hsiao et al. 2004). On the other hand, direct three-dimensional comparisons between two
point clouds provide a non-time-consuming topographic change detecting (Barnhart and
Crosby 2013). Theoretically, for each point of the referenced point cloud, its distance to the
nearest neighbour being compared is computed. Based on this theory, such methods as
Cloud-to-Cloud (Girardeau-Montaut et al. 2005) and Cloud-to-Mesh (Cignoni, Rocchini and
Scopigno 1998) are proposed to measure the deformation. But they are either limited in
situations with highly dense points or only work well on flat surfaces (Monserrat and
Crosetto 2008; Young et al. 2010), which is not suitable for rough natural objects
(Travelletti, Malet, and Delacourt 2014). Therefore, in this study, a method using the
Point Cloud Set Conflict (PCSC) is used to detect the surface changes of a giant landslide.
Surface roughness is considered in PCSC in order to estimate different objects. Objects in a
different temporal point cloud are considered as sets and surface changes are regarded as
distances of the sets conflicting.

2. Methodology

As abovementioned, terrain laser scanning techniques have become an important
approach for analysing deformation of a landslide. However, there still exist some
problems in using two temporal point clouds. For example, rough natural surfaces
would bring uncertainties to uniform distribution of studied points, which leads to a
relatively lower accuracy of results. In this paper, we proposed a new system with PCSC
technique to acquire and analyse landslide deformation.

2.1. PCSC technique

The fundamental theory of PCSC technique is described in Figure 1. Point Cloud Set a
(PCSa) and Point Cloud Set b (PCSb) are two point cloud sets, representing two sets of a
local object (depicted by a dark triangle) yet observed at different time. Here, PCSa is set
as a referenced point cloud and PCSb is set as a compared point cloud. The object’s
location has changed from a(ax, ay) to b(bx, by) during this time interval. Hence, the
changing distance should be calculated precisely by a function: dist a; bð Þ where the
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direction of it is denoted as in Figure 1 and magnitudes of it are denoted according to
Equation (1).

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax � bxð Þ2 þ ay � by

� �2q
(1)

However, as can be seen from Figure 1, there are always observation errors in point
clouds, namely σa and σb in two results, respectively, hence the precise position of the
local object could not be achieved. In practice, we would introduce a certain calculation
rule to project the point cloud sets to virtual points, as Equation (2) denoted:

a ¼ H PCSð Þa
b ¼ H PCSð Þb

�
(2)

In Equation (2), H (•) is the calculating rule to project the points to a virtual point and it
can be extended in Figure (2):

PCSa and PCSb are two observed point cloud results and their actual distance is
calculated based on virtual points. To find the visual points and calculate the distance,
four steps should be conducted:

● A semi-diameter M/2 is set at every point in the referenced point cloud (PCSa) and
points (grey squares) within its reach are selected to fit a local plane (a black circle).

● The normal (the black arrow) of the plane is constructed toward the compared
point cloud (PCSb), and a circular truncated cone is made with another semi-
diameter of m/2.

● Points from each point cloud set have projections along this normal vector. Their
average positions are recorded as two virtual points: ai and bi (dark solid dots).
Thus, the distance between two virtual points is calculated as zi ¼ dist ai; bið Þ
according to Equation (1).

● Iterate procedures above on another point and record zi values.

Figure 1. Fundamental theory of PCSC technique. PCSa and PCSb represent two point clout sets. The
distance between them could be regarded as their confliction.
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The change distance between two point cloud sets is calculated as the average distance
between virtual points through Equation (3).

Z ¼ 1
N

XN
i¼1

zi (3)

2.2. Parameters determination in PCSC

Determining diameters M and m is a key step in PCSC procedure. As studied before, the
surface roughness may lead to errors in the point cloud change detection (Heritage and
Milan 2009; Hodge 2010; Schürch et al. 2011): if M or m is of similar scales as the point
cloud roughness, the normal vector would fluctuate, which results in incorrect estima-
tion on point cloud set conflicting. The roughness can be defined as in Equation (4).

D¼ 1
N

P
Di

r ¼ 1
N

PN
i¼1

ðDi � DÞ

8<
: (4)

Di is the distance between a point and a locally fitted plane. N is the number of the
points included. r is the roughness indicator of the point cloud. Roughness is calculated
as ra; i and rb;i, so diameters M and m can be empirically determined as in Equation (5).

Mi¼k1ra;i
mi¼k2rb;i

�
(5)

Figure 2. Definition of the PCSC calculation rule. Point cloud sets are projected to virtual points and
their distance is calculated as the average distance between virtual points.
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3. Case study and LiDAR datasets

3.1. Geographic location of Xishancun landslide

Xishancun landslide, located in the south-west of the Chinese Mainland, is selected as
the study case in Figure 3(a). It is located on the northern bank of Zagunao river in Lixian
County in Figure 3(b) and is only 22 km away from Wenchuan county which is well
known for Wenchuan Earthquake in 2008. This regions are considered to be hazardous
according to previous studies (Liu et al. 2013; Liu et al. 2016).

As shown in Figure 3(c), Xishancun landslide is a giant soil accumulation body
forming a ‘U’ shape. Landslide boundaries are defined by the topography and geomor-
phology, i.e. cracks, scarps, surface deformation, and bedrock (Xu et al. 2016). Facing
south-west, it lies with a leading-edge elevation H1 being 1,500 m and a trailing edge
elevation H2 being 2,900 m, the relative relief is 1,400 m. Its maximum length L1 is 4,000
m, and its maximum width L2 is 1,700 m. The general thickness is 55 m, and the earth
volume is approximately 170 million cubic metres.

Figure 3. Brief information of Xishancun landslide. (a) Chinese Mainland and location of
Xishancun landslide in its southwest; (b) Relative location of Xishancun in Lixian County overlaid
by digital elevation model; (c) Overview of Xishancun landslide from a terrestrial photo taken in
the opposite of it.
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3.2. Field investigation and data collection

As can be seen in Figure 4(a), a GPS receiver was used to locate while investigating. Four
field investigations, located at the point of f1 – f4 in Figure 4(c), have been further
discussed in section 4. Among them, a debris flow has been found at f1 in Figure 4(a).
Original vegetation flowed away in the debris accident. The slope surface was covered
with mixture of bare soil and breaking stones rolling down from a depletion area. And in
Figure 4(b), a differential road sedimentation was found at f2. The demarcation could be
identified clearly, and the uplifting amount was measured around six centimetres as can
be seen from an enlarged view. The field investigation results indicate the landslide
movement and studying it is of great value.

Data collecting process is presented in Figure 4(c) and (d). The boundary of Xishancun
landslide is labelled with dark dash lines and the study area is circled by a dark solid line.
As abovementioned in subsection 3.1, Xishancun landslide has a length of about 4 km
and active regions are mainly located in the middle and toe of the whole landslide body
as studied before (Qu et al. 2016; Shi et al. 2016). A long-distance terrain laser scanning
system (Riegl VZ4000) was used to collect point cloud data. It has a maximum scan
distance of 4 km, thus could acquire redundant points for study. Equipped with a full
waveform module, terrain points could be detected even at vegetation dense regions.

Two phases of datasets were acquired on 13 April 2014 and 11 April 2015. Basic
information of each scan is listed in Table 1. Scanning angles were 57.410° horizontally
and 92.404° vertically in 2014. The corresponding parameters were 49.985° and 55.008°
in 2015. Horizontal resolutions were 0.010° and 0.013° and vertical resolutions were
0.013° and 0.006°, respectively. Scan frequency was set 30 Hz for both surveys. Six-
hundred and ten million and 530 million points were recorded in two surveys. In

Figure 4. Field investigation and data collection. (a) A debris flow was found around f1, in the toe of
the landslide, and a GPS device was used to position field locations. (b) Differential road sedimenta-
tion was found in the middle of landslide around f2. (c) Scanners’ locations and scanning coverage of
two surveys. Locations of four field points. (d) Data collection using the equipment Riegl VZ4000.
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addition, the positions of the scanner stations were located by real-time kinematic (RTK)
technique; therefore, the obtained points were all referred to the World Geodetic System
(WGS) −84 coordinate system.

4. Data processing and results

The flowchart of applying the PCSC technique to obtain landslide displacement is shown
in Figure 5. Original LiDAR datasets were pre-processed and two terrain point cloud sets
(PCSa and PCSb) were acquired then. After applying the PCSC technique, the displace-
ment field ZPCSC is calculated with magnitude and direction. Finally, the performance of
PCSC technique was estimated by comparing its results with InSAR’s (ZLOS,InSAR) .
Differences (ΔZ) between them were evaluated at last.

4.1. Data pre-processing

4.1.1. Registration of two point cloud sets
First, aimed at aligning two point clouds, a manual registration was performed using the
first-survey result as the referenced point cloud set. Buildings were clearly identified
from dense points at the bottom of the mountain. They were considered stable with
respect to the entire slope. Therefore, such features as corners and edges belonging to
them were selected as to correspond two point cloud sets and points of these features
were corresponding points. Standard Deviation Error (SDE) of the manual registration is
9.70 cm in the end.

Table 1. Basic information of two laser scanning.
Item First survey Second survey

Date 13 April 2014 11 April 2015
Scan range (°) Horizontal 57.410 49.985

Vertical 92.404 55.008
Resolution (°) Horizontal 0.010 0.013

Vertical 0.013 0.006
Scan frequency (Hz) 30 30
Point record (million) 610 530
Positioning technique RTK (Real-Time Kinematic) RTK

Figure 5. Flowchart of PCSC technique. PCSC technique was applied after pre-processing and its
performance was estimated by comparing results with InSAR’s.
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To minimize the alignment error, Multi-Station Adjustment (MSA) was performed
then. This tool modifies the orientation and position of each scan position in several
iterations to calculate the best overall fit. MSA uses tie points, tie objects, and poly data
objects to detect the closest point in the other point cloud set so as to further align scan
positions through iterating. Finally, the calculated SDE degraded to 2.18 cm.

4.1.2. Off-terrain objects filtering
Off-terrain objects filtering were performed to obtain terrain points and detect the
surface displacements. In this paper, full waveform LiDAR surveying helped to filter
off-terrain objects. Generally, the last back-scattered pulse represents terrain points,
which is the most relevant for deformation analysis (Jaboyedoff et al. 2012). Therefore,
the points belonging to first and other return are generally assigned to the off-terrain
class and will be removed during filtering. After filtering processing, the average dis-
tribution of point density of two surveys is shown in Figure 6.

As shown in Figure 6, surface point density generally decreases while the scanning
range increases. After off-terrain filtering, the surface point density is not evenly
distributed. It reaches the highest value of 10 points per square metre in the lower
part of the study area, which has a relatively short range with scanner’s positions
referred to Figure 4(c), and decreases while the range grows. However, there are four
representative areas found with extremely low point density (lower than one) marked

Figure 6. Average surface point density of two surveys. Four areas were found with low point
density.
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as Area 1–4 in Figure 6. In Area 1 and Area 2, there are some buildings, trees, and
farmland, so most of the acquired points are targeted as off-terrain points. Low
density in Area 3 and Area 4 where the vegetation is not widely distributed may
result from landforms which degrade the performance of filtering.

4.2. Results of PCSC

4.2.1. Calculating the surface roughness
As discussed in section 2, determining parameters M and m is a key step of PCSC. These
parameters are related to surface roughness. According to Equation (4), roughness
values are calculated first. Their average distribution can be seen from Figure 7. These
values are classified to five intervals. Lower values are mainly distributed in the northern
part of the study area, and higher ones are in the southern parts.

From Table 2 we can see that roughness is related to landforms. Values between 5
and 10 account for 71.3% of the entire study area and the representative object of this
interval is bare slope with relatively flat surfaces. Values between 10 and 15 are related
to areas distributing along roads. These surfaces are a little rougher because of some
human activities. Areas with values between 0 and 5 are distributed with a flat cliff,
which mostly lies in the north-east of the study area. Areas with values beyond 15 have
the least occupation (0.6%). According to the representative object's picture, the surficial
structure is rough and complicated. There seem to be many stones on these areas.
Based on the investigation at f1 in Figure 4(a), the slope surface is roughly covered by
breaking stones and bare soil after a debris flow. Thus, high roughness values may be
related to post-debris-flow events. Therefore, the parameter of roughness could be used
to describe the terrain surface structures.

4.2.2. Displacement field of Xishancun landslide
Displacement field of the landslide is acquired according to the proposed flowchart in
Figure 8. First, the point cloud set of the first survey in 2014 is taken as the reference
cloud (referred to as PCSa in Figure 1), and the one in 2015 is taken as the conflicted
cloud (referred to as PCSb in Figure 1). Parameters in related to roughness, k1 and k2 in
Equation (4), are set as 10 empirically. Then, the distance is calculated at every core point
(virtual point). To obtain the main deforming values, an up-scaling operation on the
PCSC result is conducted: a raster with grids of 10 m × 10 m is created and displacement
values within a grid are used to calculate a mean value. It is set as the grid value. In
addition, a convolutional median filtering with a window of 10 is performed to mitigate
the noise effects and smooth the corresponding result. Finally, a displacement field
including deforming magnitude and directions is obtained.

As shown in Figure 8, there are certain deforming principles in the displacement
results. First, displacements in the northern and eastern areas are considerably larger
than the ones in the southern. Areas with the largest displacement values are located
in the north-east of the study area, and the annual displacement is up to 246 mm.
Second, a compound pattern can be seen in the deforming direction. In the northern
and north-eastern areas, the sliding patterns are principally from north-east to south-
west. And in the north-western area, they are from north-west to south-east. Then,

INTERNATIONAL JOURNAL OF REMOTE SENSING 9



the directions converge and turn mainly to the south in the middle and toe of the
landslide.

Figure 7. Average Roughness mapping from two surveys. Roughness values are classified by four
intervals.
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4.3. Comparison of the results with InSAR

InSAR techniques could be used to detect the landslide displacement with a millimetre
accuracy (Herrera et al. 2009; Greif and Vlcko 2012). Qu (Qu et al. 2016) has used nine
descending TerraSAR images to calculate the annual changes through a small baseline
subset method. As shown in Figure 9, the InSAR results cover most of the study area. The
significant deformed areas are mostly located in the northern and eastern parts.
However, the InSAR technique does not provide deformation results in some areas.
This kind of result may come from two reasons: the influence of vegetation and the
displacement magnitude this technique can reach. For example in Figure 9, dense
vegetation results in low coherence of the interferometric pairs in Area 5, and the
deformation magnitude is beyond the detecting ability of the InSAR technique in Area 6.

The displacement results through the proposed PCSC system are compared with the
ones through InSAR system. Difference comparisons are performed in six parts with
typically active deformation from the InSAR results, denote as region (a)–(f) in Figure 9.
However, the displacements from two systems are calculated in different directions. The
InSAR deformation was calculated from a Line Of Sight (LOS) direction, so the PCSC
displacement should be projected to the LOS direction through a simple equation
according to Qu (Qu et al. 2016) as follows:

Table 2. Roughness values are divided into four intervals and the representative objects’ pictures
could be found accordingly.
Roughness Occupation (%) Representative object Description

0 < r < 5 12.6 Flat cliff

5 < r < 10 71.3 Bare slope

10 < r < 15 15.5 Road slope

15 < r < 20 0.6 Debris flow

INTERNATIONAL JOURNAL OF REMOTE SENSING 11



ZLOS;PCSC¼ZPCSCsinθ (6)

Figure 8. Annual landslide surface displacement field of Xishancun landslide is calculated through
the proposed PCSC system.
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where ZLOS;PCSC is magnitude of PCSC displacement along the LOS direction, ZPCSC is
magnitudes of measured PCSC displacements, and θ is set 33° according to the look
angle of TerraSAR satellites.

Figure 9. Annual displacement results obtained from InSAR technique (Qu et al. 2016). Six regions
(a) ––(f) with locally significant displacement are used to be compared with results from PCSC. Two
areas (Area 5 and 6) are lack of deforming results because of internal and external influences.
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After Equation (6) correcting PCSC displacements to the LOS direction, comparison of
PCSC with InSAR results can be conducted through Equation (7):

ΔZ ¼ ZLOS;PCSC�ZLOS;InSAR (7)

where ZLOS,InSAR (already in LOS direction) is displacement form InSAR. ZLOS,PCSC (pro-
jected into the LOS direction) is displacement from PCSC. ΔZ is their relative deviation.

As shown in Figure 10, the PCSC displacement results differ notably from InSAR
results. Figure 10 (a)(–(f) describes the deviation (ΔZ) histogram of correspondingly six
selected areas in Figures 9 and 10(g) exhibits overall deviation histogram of six areas
together. The average ΔZ has been calculated through Equation (8) and labelled on
every histogram.

ΔZ¼ 1
N

XN
i¼1

ΔZi (8)

Figure (10) tells that differences between PCSC and InSAR results are distinct in region
(a)–(f). Values ΔZ in region (a) and (f) are close to zero (0.57 cm and 0.22 cm, respec-
tively). In area (d) and (e) they are beyond 3.00 cm and no values less than zero, which

means ZLOS;PCSC is all larger than ZLOS;InSAR. Additionally, only in area (c) is ΔZ less than
zero (−1.15 cm) and more than a half of ΔZ values are negative. Totally speaking, even
though histograms of ΔZ differ in distinct regions, there is a particularly concentrated
distribution overall. In Figure 10(g), more than 85% of abstract ΔZ are less than 3.00 cm,

less than 1% of them are larger than 5.00 cm, and ΔZ is 1.18 cm.
The differences between PCSC and InSAR results are supposed to come from two

aspects. 1) Data involved to calculate displacement comes from different time
sequences. PCSC results present deformation of the year 2014–2015, but InSAR result
do of the year 2015–2016. Xishancun landslide may have a different state of movement

Figure 10. Comparison of the results between PCSC and InSAR. (a)–(f): corresponding six defined
parts in Figure 9. (g): Overall difference histogram of the six parts together.
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at different time. 2) Projecting the PCSC displacements to the LOS direction of SAR may
bring in errors because the projecting equation (Equation 6) is too simple here.
However, the comparison above still implicates that deviations between PCSC and
InSAR results are at centimetre level. Totally average deviation is 1.18 cm. Aimed at
studying the movement features of an oversized landslide, a confidence of centimetre
could be acceptable. Therefore, an analysis combined with deforming modes could be
further extended based on the displacement field results in the following section.

4.4. Trigger factor of results in landslide mechanism

Trigger factors of the displacement result could be originated from the potential land-
slide movement mechanism. The Xishancun landslide is shown to be a quite complex
landslide exhibiting different deforming modes as reported in former studies (Qu et al.
2016; Shi et al. 2016). In this subsection, two types of deformation patterns in this
landslide, known as compound deforming and multi-platform deforming, respectively,
are further discussed based on the abundant displacement information through the
proposed technique.

An area with compound deforming modes is found in the most active part, located at
the north-east of the study area as discussed in subsection 4.2. This region has a
displacement range of 130–246 mm, and it could be divided into a small part and a
large part by cyan dash lines based on displacement characteristics in Figure 11(a). First,
in the small part, displacement values are below 190 mm and deforming directions has a
tendency of turning south-west from the southeast. On the contrary in the large part,
displacement values are all beyond 290 mm and have consistent deforming directions
from north-east to south-west. Additionally, there is a minor scarp and a larger scarp
forming the landslide platforms marked in blue lines. Details of the minor scarp, in the
neighbour of investigation point f3, are presented in Figure 11(b). An obvious trailing
edge is exhibited, and the scarp bares out with an estimated relative fall of about 10 m
in an enlarged view. And the main scarp, with a length of more than 200 m from west to
east, is in the lower part of this region. Displacements below the scarp have the largest
magnitude, and their directions are relatively west–south-west in Figure 11(a). The main
scarp can be identified in an orthophoto image in Figure 11(c). There is dense vegeta-
tion distributed above and below the scarp. As a contrast, the scarp looks white because
of little vegetation covering.

As described above, there are different deforming parts in this region (i.e. one small
part and one large part with two scarps). Their deforming modes could be further
analysed through acquired displacement results combined with the topographic inter-
pretation in the view of the landslide mechanism. Therefore, this region is supposed to
be compound deformed.

There are multi-sliding platforms in neighbour of investigation point f4. Two typical
scarps, marked in blue lines, could be recognised through mapping slope degrees in
Figure 12(a). They both have the largest slope angle grade of 44–86°. The main scarp is
located lower than the secondary scarp. Deforming just below two scarps is consistent in
this region in Figure 12(b). Most of it has magnitudes between 150 and 185 mm (coloured
by yellow) and has directions from north-east to south-west. The main scarp has a length of
more than 100 m. An orthophoto image and an enlarged field photo of the main scarp are

INTERNATIONAL JOURNAL OF REMOTE SENSING 15



Figure 12. Multi-sliding platforms found in neighbour of field point f4. (a) Information of the
platforms by mapping slope degrees. (b) A main scarp and a minor one overlaid by the displace-
ment results in this region. (c) An orthophoto image of the main scarp and the enlarged view of it.

Figure 11. Compound sliding modes in the Xishancun landslide. (a) An overall view of the largest
deformed regions with a demarcation and two scarps. (b) A field picture and the enlarged view of
the minor scarp taken around field point f3. (c) A view of the main scarp in an orthophoto image.
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shown in Figure 12(c). The platform, covered by vegetation, could be clearly identified
according to the enlarged picture according to it. Therefore, a multi-platform deforming
mode can be recognised in this region based on the displacement results.

In this subsection, the trigger factor of results originated from the landslide move-
ment mechanism, has been discussed through further analysing the sliding modes. On
the one hand, the compound deforming mode and the multi-platform sliding mode
have been successfully identified through abundant displacement information including
magnitude and directions. On the other hand, the analysed sliding modes could be
explained with the landslide movement mechanism and corresponding field pictures as
well. Therefore, cross analysis on deforming modes combined with the trigger factor in
landslide movement mechanism could make the displacement results more convincible.

5. Conclusion and discussion

The LiDAR-based technique stands out for its high accuracy and effectiveness in survey-
ing giant landslides. This study applies a method called PCSC to acquire the surface
changes from two temporal point clouds. In this method, registration and off-terrain
objects filtering are adopted in the pre-processing. Then, surface displacement results,
including magnitude and directions, are calculated through PCSC technique based on
terrain roughness. These results are comparable with the ones of InSAR-derived defor-
mations. The differences estimated from two systems are at centimetre level (1.18 cm) in
relatively active areas. In addition, based on the displacement results obtained, two
landslide deformation patterns are analysed that may improve the understanding of the
landslide movement mechanism.

This study indicates that the PCSC technique could provide an informative displace-
ment field for the study of giant landslides. The results have an acceptable difference at
centimetre level compared with that of InSAR and they are consistent with the landslide
movement mechanism as well. As result, the proposed technique may provide a useful
guide for future research.

However, uncertainties originated from certain operations would still not be
neglected in evaluating the results, although the corresponding results have been
compared with the ones from the InSAR technique. Uncertainties may come from
following three factors:

● Registration uncertainties. To detect the change between two surveys, strict regis-
tration must be performed on these two-point cloud sets. In our study, efforts have
been achieved to ensure it in two operations. First, the manual registration method
is adopted by selecting certain discernible stable features (i.e. corners and edges of
building) as the corresponding points. Then, the MSA method is performed to
decrease the errors through iterating. Finally, the SDE decreases to 2.18 cm from
9.70 cm. However, these errors still have negative influences on the PCSC results.
They may be the principal reason that the PCSC results have larger differences in
comparison with InSAR results.

● Displacement calculation uncertainties. PCSC models the calculated distances inter-
actively: two fitting planes are calculated at every core point (virtual point) from the
reference cloud and sub-core point from the compared cloud. Parameters as M and
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m are used to model the fitting planes. Since the fitting planes are used to describe
the landslide surface, their parameters should vary distinctly with surface rough-
ness changes. In our study, a simple linear relationship 10 times larger than the
local roughness is used to determine M and m empirically. However, this relation-
ship may be more complex (Sagy, Brodsky, and Axen 2007). And identifying each
local geomorphology and providing a detailed description is time-consuming.
Therefore, the simplification was used to lower the labour cost but it causes
uncertainties in the results as well.

● Filtering uncertainties. Some filters have been performed to calculate and map the
surface roughness and displacement field of the landslide, for example, upscaling the
point cloud sets to 10 m × 10 m grids and smoothing the displacement results with a
median filter. These operations help to improve results in dealing with issues like
noisy, low point density, etc.. However, certain detailed displacement information
may be lost within these operations as well. Therefore, they may bring filtering
uncertainties in results.
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