564 research outputs found

    Impact of Cloud Longwave Scattering on Radiative Fluxes Associated With the Madden‐Julian Oscillation in the Indian Ocean and Maritime Continent

    Full text link
    Previous studies suggested that cloud longwave radiation contributes to the development and maintenance of the Madden‐Julian Oscillation (MJO) and model‐based convection is highly sensitive to the radiation scheme. However, currently used radiation schemes do not take cloud longwave scattering into account, resulting in an overestimation of the outgoing longwave radiation (OLR) and an underestimation of the downward longwave flux at the surface. We use combined active and passive satellite cloud property retrievals to quantify the one‐layer cloud OLR and heating rate (HR) biases introduced by neglecting cloud longwave scattering in the Indian Ocean and Maritime Continent in the context of MJO, with a focus on its phases 3, 5, and 6. The results show that the satellite‐detected one‐layer cloud area consists primarily of ice clouds, particularly during the boreal winter in the 4‐year study period. An increased ice cloud area fraction of one‐layer cloud groups is present up to 5 days before the onset of MJO events. If longwave scattering is neglected, the composite mean OLR overestimation over the one‐layer ice cloud area from 5 days before to 4 days after the MJO passage is approximately 3.5 to 5.0 W m−2. Neglecting longwave scattering also leads to a HR underestimation at cloud base and an overestimation at cloud top, making the base‐to‐top heating gradient less sharp at the cloud‐resolving scale.Key PointsDuration of one‐layer ice cloud coverage increases up to 5 days before the Madden‐Julian Oscillation (MJO) passageNeglecting longwave scattering leads to a 3.5 to 5.0 W m−2 overestimation of the outgoing longwave radiation (OLR)Neglecting longwave scattering leads to a less sharp heating gradient from cloud base to cloud topPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155944/1/jgrd56305_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155944/2/jgrd56305.pd

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Measurement of CP asymmetries and branching fraction ratios of B− decays to two charm mesons

    Get PDF
    The CPCP asymmetries of seven B−B^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9fb−19\text{fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0D^{*0} or Ds∗−D^{*-}_s meson are analysed by reconstructing only the D0D^0 or Ds−D^-_s decay products. This paper presents the first measurement of ACP(B−→Ds∗−D0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(B−→Ds−D∗0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.The CP asymmetries of seven B−^{−} decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb−1^{−1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0^{*0} or Ds∗− {D}_s^{\ast -} meson are analysed by reconstructing only the D0^{0} or Ds− {D}_s^{-} decay products. This paper presents the first measurement of ACP \mathcal{A} ^{CP}(B−^{−}→Ds∗− {D}_s^{\ast -} D0^{0}) and ACP \mathcal{A} ^{CP}(B−^{−}→Ds− {D}_s^{-} D∗0^{∗0}), and the most precise measurement of the other five CP asymmetries. There is no evidence of CP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured.[graphic not available: see fulltext]The CPCP asymmetries of seven B−B^- decays to two charm mesons are measured using data corresponding to an integrated luminosity of 9 fb−19\text{ fb}^{-1} of proton-proton collisions collected by the LHCb experiment. Decays involving a D∗0D^{*0} or Ds∗−D^{*-}_s meson are analysed by reconstructing only the D0D^0 or Ds−D^-_s decay products. This paper presents the first measurement of ACP(B−→Ds∗−D0)\mathcal{A}^{CP}(B^- \rightarrow D^{*-}_s D^0) and ACP(B−→Ds−D∗0)\mathcal{A}^{CP}(B^- \rightarrow D^{-}_s D^{*0}), and the most precise measurement of the other five CPCP asymmetries. There is no evidence of CPCP violation in any of the analysed decays. Additionally, two ratios between branching fractions of selected decays are measured

    The improved Ocean Surface Albedo scheme (Version 1.0)

    No full text
    &lt;p&gt;For the paper: &lt;i&gt;Sensitivity of Arctic surface temperature to including a comprehensive ocean interior reflectance to the ocean surface albedo within the fully coupled CESM2&lt;/i&gt;&lt;/p&gt;&lt;p&gt;Code: the ocean surface albedo scheme. Version 1.0.&lt;/p&gt

    Application of Electronic Nose for Rapid Detection of Off-flavour of Raw Pork

    No full text
    A method for the rapid identification of off-flavoured raw pork was investigated in this study as the off-flavoured raw pork often found in slaughtering and quarantine and brought the economic loss to the pork industry. The electronic nose (e-nose) was used to analyse the volatile compounds of normal and off-flavoured pork from two cuts (plum and hind legs) and principal component analysis (PCA), linear discriminant analysis (LDA) and random forest (RF) were combined to identify and classify the pork samples. It was also verified by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). The results showed that the PCA, LDA and RF models could effectively differentiate off-flavoured pork from normal pork by using e-nose detection. The test set of hind leg meat showed better classification accuracy than plum meat, which were 91% and 81% respectively. W1S, W5C, W3C, W1C and W2W were the key sensors in the e-nose detection. A total of 50 odour substances were detected by HS-GC-IMS, including 11 ketones, 10 aldehydes, 8 esters, 5 acids, 6 alcohols, 9 other substances (including sulphur and nitrogen containing substances) and 1 uncharacterised substance. Methyl acetate, 2-butanone, 2-hexanone, n-propanol, ethyl isovalerate, and 2-pentylfuran were identified as volatile markers to distinguish between normal and off-flavoured pork screened by using partial least squares discriminant analysis (PLS-DA). The results of the e-nose and HS-GC-IMS measurements were in good agreement, confirming that the e-nose technique could be used for identification and discrimination of off-flavoured raw pork, which would provide a technical reference for the rapid identification of off-flavoured raw pork

    Isolation and Characterization of Sesquiterpenes from Celastrus orbiculatus and Their Antifungal Activities against Phytopathogenic Fungi

    No full text
    Celastrus orbiculatus is an insecticidal plant belonging to the Celastraceae family. In this survey on the secondary metabolites of plants for obtaining bioactive substances to serve agriculture, the chemical constituents of the fruits of <i>C. orbiculatus</i> were investigated. This phytochemical investigation resulted in the isolation of nine new and one known sesquiterpene. Their structures, especially the complicated stereochemical features, were elucidated on the basis of extensive NMR spectroscopic data analyses, time-dependent density functional theory CD calculations, and the CD exciton chirality method. Biological screenings disclosed that these sesquiterpenes showed antifungal activities against six phytopathogenic fungi. The results of our phytochemical investigation further disclosed the chemical components of <i>C. orbiculatus</i>, and biological screening implied that it may be potentially useful to protect crops against phytopathogenic fungi and the bioactive compounds may be regarded as candidate agents of antifungal agrochemicals for crop protection products

    Discovery and Mechanism Study of SARS-CoV‑2 3C-like Protease Inhibitors with a New Reactive Group

    No full text
    3CLpro is an attractive target for the treatment of COVID-19. Using the scaffold hopping strategy, we identified a potent inhibitor of 3CLpro (3a) that contains a thiocyanate moiety as a novel warhead that can form a covalent bond with Cys145 of the protein. Tandem mass spectrometry (MS/MS) and X-ray crystallography confirmed the mechanism of covalent formation between 3a and the protein in its catalytic pocket. Moreover, several analogues of compound 3a were designed and synthesized. Among them, compound 3h shows the best inhibition of 3CLpro with an IC50 of 0.322 ÎŒM and a kinact/Ki value of 1669.34 M–1 s–1, and it exhibits good target selectivity for 3CLpro against host proteases. Compound 3c inhibits SARS-CoV-2 in Vero E6 cells (EC50 = 2.499 ÎŒM) with low cytotoxicity (CC50 > 200 ÎŒM). These studies provide ideas and insights to explore and develop new 3CLpro inhibitors in the future
    • 

    corecore