148 research outputs found

    Biomimetic Homogeneous Oxidation Catalyzed by Metalloporphyrins with Green Oxidants

    Get PDF
    Cytochrome P-450 mono-oxygenase enzymes play a key role in the oxidative transformation in living systems. As one kind of cytochrome P-450 models, metalloporphyrins have been widely used in selective oxygenation of hydrocarbons under mild conditions. The chapter focuses on reviewing the biomimetic homogeneous oxidation of organic compounds catalyzed by metalloporphyrins with green oxidants such as dioxygen or hydrogen peroxide, in which the oxidized substrates include alkanes, olefins, alcohols, aldehydes, sulfides etc. The mechanisms for the oxidation of different substrates were also described. We can assume that the coming decade is going to be dedicated to the development of metalloporphyrins biomimetic catalyst in petrochemical and fine chemical industries. Keywords: Biomimetic, Cytochrome, Metalloporphyrins, Oxidation, Homogegeou

    Solvent-free selective oxidation of primary and secondary alcohols catalyzed by ruthenium-bis(benzimidazole)pyridinedicarboxylate complex using hydrogen peroxide as an oxidant

    Get PDF
    AbstractA convenient and selective oxidation of alcohols with aqueous hydrogen peroxide to give the corresponding carbonyl compounds under solvent-free conditions has been developed. By applying ruthenium-bis(benzimidazole)pyridinedicarboxylate complex [Ru(bbp)(pydic)] as catalyst, primary, and secondary alcohols were oxidized to aldehydes and ketones in good yield and excellent selectivity under mild conditions

    Diverse Applications of Nanomedicine

    Get PDF
    The design and use of materials in the nanoscale size range for addressing medical and health-related issues continues to receive increasing interest. Research in nanomedicine spans a multitude of areas, including drug delivery, vaccine development, antibacterial, diagnosis and imaging tools, wearable devices, implants, high-throughput screening platforms, etc. using biological, nonbiological, biomimetic, or hybrid materials. Many of these developments are starting to be translated into viable clinical products. Here, we provide an overview of recent developments in nanomedicine and highlight the current challenges and upcoming opportunities for the field and translation to the clinic. \ua9 2017 American Chemical Society

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Substrate specificity in the biomimetic catalytic aerobic oxidation of styrene and cyclohexanone by metalloporphyrins: kinetics and mechanistic study

    No full text
    Substrate specificity is a hallmark of enzymatic catalysis. In this work, the biomimetic catalytic oxidation of styrene and cyclohexanone by iron (III) porphyrins and molecular oxygen was carried out, and remarkable differences in efficiency were observed. The specificity of the substrates for biomimetic catalytic oxidation was investigated by kinetics and mechanistic studies. Kinetics studies revealed that the oxidation of styrene followed Michaelis–Menten kinetics with KM ​= ​8.99 ​mol L-1, but the oxidation of cyclohexanone followed first-order kinetics with kobs ​= ​1.46 ​× ​10−4 ​s−1, indicating that the styrene epoxidation by metalloporphyrins exhibited characteristics of enzyme-like catalysis, while the oxidation of cyclohexanone was in agreement with the general rules of chemical catalysis. Different catalytic mechanisms for the two substrates were discussed by operando electron paramagnetic resonance spectroscopy, operando UV–vis spectroscopy, and KI/starch experiments. Substrate specificity was concluded to be attributed to the stability of high-valence species and oxygen transfer rate

    Photocatalytic Degradation of Methyl Orange over Metalloporphyrins Supported on TiO2 Degussa P25

    No full text
    The photocatalytic activity of meso-tetraphenylporphyrins with different metal centers (Fe, Co, Mn and Cu) adsorbed on TiO2 (Degussa P25) surface has been investigated by carrying out the photodegradation of methyl orange (MO) under visible and ultraviolet light irradiation. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance UV (DRS-UV-vis) and infrared spectra. Copper porphyrin-sensitized TiO2 photocatalyst (CuP-TiO2) showed excellent activity for the photodegradation of MO whether under visible or ultraviolet light irradiation. Natural Bond Orbital (NBO) charges analysis showed that methyl orange ion is adsorbed easier by CuP-TiO2 catalyst due to the increase of induced interactions
    corecore