772 research outputs found

    Genome-wide scan using DArT markers for selection footprints in six-rowed naked barley from the Tibetan Plateau

    Get PDF
    As one of the world’s earliest domesticated crops, barley is a model species for the study of evolution and domestication. Domestication is an evolutionary process whereby a population adapts, through selection; to new environments created by human cultivation. We describe the genome-scanning of molecular diversity to assess the evolution of barley in the Tibetan Plateau. We used 667 Diversity Arrays Technology (DArT) markers to genotype 185 barley landraces and wild barley accessions from the Tibetan Plateau. Genetic diversity in wild barley was greater than in landraces at both genome and chromosome levels, except for chromosome 3H. Landraces and wild barley accessions were clearly differentiated genetically, but a limited degree of introgression was still evident. Significant differences in diversity between barley subspecies at the chromosome level were observed for genes known to be related to physiological and phenotypical traits, disease resistance, abiotic stress tolerance, malting quality and agronomic traits. Selection on the genome of six-rowed naked barley has shown clear multiple targets related to both its specific end-use and the extreme environment in Tibet. Our data provide a platform to identify the genes and genetic mechanisms that underlie phenotypic changes, and provide lists of candidate domestication genes for modified breeding strategies

    Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI)

    No full text
    We applied acoustic radiation force impulse imaging (ARFI) for examination of the brains of 41 neonatal infants of different gestational ages. We used a new technical index, Virtual Touch tissue quantification (VTQ), to evaluate elastic properties of the brain tissues. Different brain tissues demonstrated different values of this index. The greater the gestational age, the higher the VTQ value. We conclude that ARFI provides a new quantitative index to evaluate the level of neonatal brain development and increases the objectivity and reliability of clinical analysis. The method is noninvasive, safe, simple, convenient, and can be extensively applied in clinics.Досліджували результати візуалізації впливу силових імпульсів акустичного випромінювання (ARFI), вивчаючи головний мозок 41 новонародженого з різними термінами гестації. Ми використовували новий технічний індекс Virtual Touch Quantification (VTQ) для оцінки еластичних властивостей тканин мозку. У різних тканин мозку значення даного індексу були відмінними. Ми дійшли висновку, що методика ARFI дозволяє отримати новий кількісний показник для оцінки ступеню розвитку неонатального мозку; це збільшує об’єктивність та надійність клінічних аналізів. Метод є неінвазивним, безпечним, простим та зручним і може знайти широке застосування в клініці

    A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells

    Get PDF
    Reversing the dysfunctional T cell state that arises in cancer and chronic viral infections is the focus of therapeutic interventions; however, current therapies are effective in only some patients and some tumor types. To gain a deeper molecular understanding of the dysfunctional T cell state, we analyzed population and single-cell RNA profiles of CD8+tumor-infiltrating lymphocytes (TILs) and used genetic perturbations to identify a distinct gene module for T cell dysfunction that can be uncoupled from T cell activation. This distinct dysfunction module is downstream of intracellular metallothioneins that regulate zinc metabolism and can be identified at single-cell resolution. We further identify Gata-3, a zinc-finger transcription factor in the dysfunctional module, as a regulator of dysfunction, and we use CRISPR-Cas9 genome editing to show that it drives a dysfunctional phenotype in CD8+TILs. Our results open novel avenues for targeting dysfunctional T cell states while leaving activation programs intact

    Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?

    Full text link
    In this paper we put forward a running coupling scenario for describing the interaction between dark energy and dark matter. The dark sector interaction in our scenario is free of the assumption that the interaction term QQ is proportional to the Hubble expansion rate and the energy densities of dark sectors. We only use a time-variable coupling b(a)b(a) (with aa the scale factor of the universe) to characterize the interaction QQ. We propose a parametrization form for the running coupling b(a)=b0a+be(1a)b(a)=b_0a+b_e(1-a) in which the early-time coupling is given by a constant beb_e, while today the coupling is given by another constant, b0b_0. For investigating the feature of the running coupling, we employ three dark energy models, namely, the cosmological constant model (w=1w=-1), the constant ww model (w=w0w=w_0), and the time-dependent ww model (w(a)=w0+w1(1a)w(a)=w_0+w_1(1-a)). We constrain the models with the current observational data, including the type Ia supernova, the baryon acoustic oscillation, the cosmic microwave background, the Hubble expansion rate, and the X-ray gas mass fraction data. The fitting results indicate that a time-varying vacuum scenario is favored, in which the coupling b(z)b(z) crosses the noninteracting line (b=0b=0) during the cosmological evolution and the sign changes from negative to positive. The crossing of the noninteracting line happens at around z=0.20.3z=0.2-0.3, and the crossing behavior is favored at about 1σ\sigma confidence level. Our work implies that we should pay more attention to the time-varying vacuum model and seriously consider the phenomenological construction of a sign-changeable or oscillatory interaction between dark sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the 100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π\pi^- and μ\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change
    corecore