1,809 research outputs found

    Seebeck coefficients of cells with lithium carbonate and gas electrodes

    Get PDF
    AbstractThe Seebeck coefficient is reported for thermoelectric cells with gas electrodes and a molten electrolyte of one salt, lithium carbonate, at an average temperature of 750°C. We show that the coefficient, which is 0.88mVK−1, can be further increased by adding an inorganic oxide powder to the electrolyte. We interpret the measurements using the theory of irreversible thermodynamics and find that the increase in the Seebeck coefficient is due to a reduction in the transported entropy of the carbonate ion when adding solid particles to the alkali carbonate. Oxides of magnesium, cerium and lithium aluminate lead to a reduction in the transported entropy from 232±12 to around 200±4JK−1mol−1. This is of importance for design of thermoelectric converters

    Multigluon Helicity Amplitudes Involving a Quark Loop

    Full text link
    We apply the solution to the recursion relation for the double-off-shell quark current to the problem of computing one loop amplitudes with an arbitrary number of gluons. We are able to compute amplitudes for photon-gluon scattering, electron-positron annihilation to gluons, and gluon-gluon scattering via a quark loop in the case of like-helicity gluons. In addition, we present the result for the one-loop gluon-gluon scattering amplitude when one of the gluons has opposite helicity from the others.Comment: 31 pages (RevTeX) + 2 uuencoded figures (included), Fermilab-Pub-93/389-

    Electronic-structure modifications induced by surface segregation in La\u3csub\u3e0.65\u3c/sub\u3ePb\u3csub\u3e0.35\u3c/sub\u3eMnO\u3csub\u3e3\u3c/sub\u3e thin films

    Get PDF
    Using spin-polarized inverse photoemission and X-ray absorption spectroscopy techniques, we show that the electronic structure of La0.65Pb0.35MnO3 thin films depends on the composition at the surface. With a gentle annealing procedure, the surface provides a maximum of 80% spin asymmetry at 0.5 eV above the Fermi level in spite of extensive Pb segregation. A heavily annealed (restructured) surface exhibits a reduced surface ordering temperature of 240 K (compared to the approximately 335 K bulk value) as well as a reduced spin asymmetry value of 40% at 0.5 eV above Fermi energy

    The Influence of Solar Flares on the Lower Solar Atmosphere: Evidence from the Na D Absorption Line Measured by GOLF/SOHO

    Full text link
    Solar flares presumably have an impact on the deepest layers of the solar atmosphere and yet the observational evidence for such an impact is scarce. Using ten years of measurements of the Na D1_{1} and Na D2_2 Fraunhofer lines, measured by GOLF onboard SOHO, we show that this photospheric line is indeed affected by flares. The effect of individual flares is hidden by solar oscillations, but a statistical analysis based on conditional averaging reveals a clear signature. Although GOLF can only probe one single wavelength at a time, we show that both wings of the Na line can nevertheless be compared. The varying line asymmetry can be interpreted as an upward plasma motion from the lower solar atmosphere during the peak of the flare, followed by a downward motion.Comment: 13 pages, 7 figure

    Phase transition from a dx2y2d_{x^2-y^2} to dx2y2+dxyd_{x^2-y^2}+d_{xy} superconductor

    Full text link
    We study the phase transition from a dx2y2d_{x^2-y^2} to dx2y2+dxyd_{x^2-y^2}+d_{xy} superconductor using the tight-binding model of two-dimensional cuprates. As the temperature is lowered past the critical temperature TcT_c, first a dx2y2 d_{x^2-y^2} superconducting phase is created. With further reduction of temperature, the dx2y2+dxy d_{x^2-y^2}+d_{xy} phase is created at temperature T=Tc1T=T_{c1}. We study the temperature dependencies of the order parameter, specific heat and spin susceptibility in these mixed-angular-momentum states on square lattice and on a lattice with orthorhombic distortion. The above-mentioned phase transitions are identified by two jumps in specific heat at TcT_c and Tc1T_{c1}.Comment: Latex file, 5 pages, 6 postscript figures, Accepted in Physical Review

    MHV Rules for Higgs Plus Multi-Gluon Amplitudes

    Get PDF
    We use tree-level perturbation theory to show how non-supersymmetric one-loop scattering amplitudes for a Higgs boson plus an arbitrary number of partons can be constructed, in the limit of a heavy top quark, from a generalization of the scalar graph approach of Cachazo, Svrcek and Witten. The Higgs boson couples to gluons through a top quark loop which generates, for large top mass, a dimension-5 operator H tr G^2. This effective interaction leads to amplitudes which cannot be described by the standard MHV rules; for example, amplitudes where all of the gluons have positive helicity. We split the effective interaction into the sum of two terms, one holomorphic (selfdual) and one anti-holomorphic (anti-selfdual). The holomorphic interactions give a new set of MHV vertices -- identical in form to those of pure gauge theory, except for momentum conservation -- that can be combined with pure gauge theory MHV vertices to produce a tower of amplitudes with more than two negative helicities. Similarly, the anti-holomorphic interactions give anti-MHV vertices that can be combined with pure gauge theory anti-MHV vertices to produce a tower of amplitudes with more than two positive helicities. A Higgs boson amplitude is the sum of one MHV-tower amplitude and one anti-MHV-tower amplitude. We present all MHV-tower amplitudes with up to four negative-helicity gluons and any number of positive-helicity gluons (NNMHV). These rules reproduce all of the available analytic formulae for Higgs + n-gluon scattering (n<=5) at tree level, in some cases yielding considerably shorter expressions.Comment: 34 pages, 8 figures; v2, references correcte

    Two-Loop Helicity Amplitudes for Quark-Gluon Scattering in QCD and Gluino-Gluon Scattering in Supersymmetric Yang-Mills Theory

    Full text link
    We present the two-loop QCD helicity amplitudes for quark-gluon scattering, and for quark-antiquark annihilation into two gluons. These amplitudes are relevant for next-to-next-to-leading order corrections to (polarized) jet production at hadron colliders. We give the results in the `t Hooft-Veltman and four-dimensional helicity (FDH) variants of dimensional regularization. The transition rules for converting the amplitudes between the different variants are much more intricate than for the previously discussed case of gluon-gluon scattering. Summing our two-loop expressions over helicities and colors, and converting to conventional dimensional regularization, gives results in complete agreement with those of Anastasiou, Glover, Oleari and Tejeda-Yeomans. We describe the amplitudes for 2 to 2 scattering in pure N=1 supersymmetric Yang-Mills theory, obtained from the QCD amplitudes by modifying the color representation and multiplicities, and verify supersymmetry Ward identities in the FDH scheme.Comment: 77 pages. v2: corrected errors in eqs. (3.7) and (3.8) for one-loop assembly; remaining results unaffecte

    Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability.

    Get PDF
    In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence
    corecore