7,213 research outputs found

    Chaotic motion of charged particles in toroidal magnetic configurations

    Get PDF
    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a non generic perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to a axi-symmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics

    Non-Preemptive Scheduling on Machines with Setup Times

    Full text link
    Consider the problem in which n jobs that are classified into k types are to be scheduled on m identical machines without preemption. A machine requires a proper setup taking s time units before processing jobs of a given type. The objective is to minimize the makespan of the resulting schedule. We design and analyze an approximation algorithm that runs in time polynomial in n, m and k and computes a solution with an approximation factor that can be made arbitrarily close to 3/2.Comment: A conference version of this paper has been accepted for publication in the proceedings of the 14th Algorithms and Data Structures Symposium (WADS

    Bounds on the nonminimal coupling of the Higgs Boson to gravity

    Get PDF
    We derive the first bound on the value of the Higgs boson nonminimal coupling to the Ricci scalar. We show that the recent discovery of the Higgs boson at the Large Hadron Collider at CERN implies that the nonminimal coupling is smaller than 2.6×10^15

    A time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities

    Get PDF
    We present an efficient perturbative method to obtain both static and dynamic polarizabilities and hyperpolarizabilities of complex electronic systems. This approach is based on the solution of a frequency dependent Sternheimer equation, within the formalism of time-dependent density functional theory, and allows the calculation of the response both in resonance and out of resonance. Furthermore, the excellent scaling with the number of atoms opens the way to the investigation of response properties of very large molecular systems. To demonstrate the capabilities of this method, we implemented it in a real-space (basis-set free) code, and applied it to benchmark molecules, namely CO, H2O, and paranitroaniline (PNA). Our results are in agreement with experimental and previous theoretical studies, and fully validate our approach.Comment: 9 pages, 4 figure

    Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation

    Full text link
    In this paper we demonstrate an active polarization drift compensation scheme for optical fibres employed in a quantum key distribution experiment with polarization encoded qubits. The quantum signals are wavelength multiplexed in one fibre along with two classical optical side channels that provide the control information for the polarization compensation scheme. This set-up allows us to continuously track any polarization change without the need to interrupt the key exchange. The results obtained show that fast polarization rotations of the order of 40*pi rad/s are effectively compensated for. We demonstrate that our set-up allows continuous quantum key distribution even in a fibre stressed by random polarization fluctuations. Our results pave the way for Bell-state measurements using only linear optics with parties separated by long-distance optical fibres

    A Deep Search For Faint Galaxies Associated With Very Low-redshift C IV Absorbers: III. The Mass- and Environment-dependent Circumgalactic Medium

    Get PDF
    Using Hubble Space Telescope Cosmic Origins Spectrograph observations of 89 QSO sightlines through the Sloan Digital Sky Survey footprint, we study the relationships between C IV absorption systems and the properties of nearby galaxies as well as large-scale environment. To maintain sensitivity to very faint galaxies, we restrict our sample to 0.0015 < z < 0.015, which defines a complete galaxy survey to L > 0.01 L* or stellar mass log M_* > 8 Msun. We report two principal findings. First, for galaxies with impact parameter rho < 1 rvir, C IV detection strongly depends on the luminosity/stellar mass of the nearby galaxy. C IV is preferentially associated with galaxies with log M_* > 9.5 Msun; lower mass galaxies rarely exhibit significant C IV absorption (covering fraction f = 9 +12-6% for 11 galaxies with log M_* < 9.5 Msun). Second, C IV detection within the log M_* > 9.5 Msun population depends on environment. Using a fixed-aperture environmental density metric for galaxies with rho < 160 kpc at z < 0.055, we find that 57+/-12% (8/14) of galaxies in low-density regions (regions with fewer than seven L > 0.15 L* galaxies within 1.5 Mpc) have affiliated C IV absorption; however, none (0/7) of the galaxies in denser regions show C IV. Similarly, the C IV detection rate is lower for galaxies residing in groups with dark-matter halo masses of log Mhalo > 12.5 Msun. In contrast to C IV, H I is pervasive in the CGM without regard to mass or environment. These results indicate that C IV absorbers with log N(C IV) > 13.5 cm^-2 trace the halos of log M_* > 9.5 Msun galaxies but also reflect larger scale environmental conditions.Comment: 26 pages, 13 figures. ApJ, in pres

    Universality in Bacterial Colonies

    Full text link
    The emergent spatial patterns generated by growing bacterial colonies have been the focus of intense study in physics during the last twenty years. Both experimental and theoretical investigations have made possible a clear qualitative picture of the different structures that such colonies can exhibit, depending on the medium on which they are growing. However, there are relatively few quantitative descriptions of these patterns. In this paper, we use a mechanistically detailed simulation framework to measure the scaling exponents associated with the advancing fronts of bacterial colonies on hard agar substrata, aiming to discern the universality class to which the system belongs. We show that the universal behavior exhibited by the colonies can be much richer than previously reported, and we propose the possibility of up to four different sub-phases within the medium-to-high nutrient concentration regime. We hypothesize that the quenched disorder that characterizes one of these sub-phases is an emergent property of the growth and division of bacteria competing for limited space and nutrients.Comment: 12 pages, 5 figure

    Very long O-antigen chains enhance fitness during Salmonella-induced colitis by increasing bile resistance.

    Get PDF
    Intestinal inflammation changes the luminal habitat for microbes through mechanisms that have not been fully resolved. We noticed that the FepE regulator of very long O-antigen chain assembly in the enteric pathogen Salmonella enterica serotype Typhimurium (S. Typhimurium) conferred a luminal fitness advantage in the mouse colitis model. However, a fepE mutant was not defective for survival in tissue, resistance to complement or resistance to polymyxin B. We performed metabolite profiling to identify changes in the luminal habitat that accompany S. Typhimurium-induced colitis. This analysis suggested that S. Typhimurium-induced colitis increased the luminal concentrations of total bile acids. A mutation in fepE significantly reduced the minimal inhibitory concentration (MIC) of S. Typhimurium for bile acids in vitro. Oral administration of the bile acid sequestrant cholestyramine resin lowered the concentrations of total bile acids in colon contents during S. Typhimurium infection and significantly reduced the luminal fitness advantage conferred by the fepE gene in the mouse colitis model. Collectively, these data suggested that very long O-antigen chains function in bile acid resistance of S. Typhimurium, a property conferring a fitness advantage during luminal growth in the inflamed intestine
    corecore