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The authors present an efficient perturbative method to obtain both static and dynamic
polarizabilities and hyperpolarizabilities of complex electronic systems. This approach is based on
the solution of a frequency-dependent Sternheimer equation, within the formalism of
time-dependent density functional theory, and allows the calculation of the response both in
resonance and out of resonance. Furthermore, the excellent scaling with the number of atoms opens
the way to the investigation of response properties of very large molecular systems. To demonstrate
the capabilities of this method, they implemented it in a real-space �basis-set-free� code and applied
it to benchmark molecules, namely, CO, H2O, and para-nitroaniline. Their results are in agreement
with experimental and previous theoretical studies and fully validate their approach. © 2007
American Institute of Physics. �DOI: 10.1063/1.2733666�

I. INTRODUCTION

The optical properties of a material are essentially deter-
mined by the response of the electrons to an external field. If
this applied field is small, the induced dipole of the system
can be expanded in powers of the field.1,2 The first order
coefficient is the so-called electric polarizability �. This
quantity describes, e.g., the dielectric properties of the mate-
rial and how light is absorbed and emitted. In second order
we obtain the first hyperpolarizability � that is responsible
for the processes of second harmonic generation, optical rec-
tification, and Pockles effect.1 Higher order terms can be
related to other electro-optical effects such as third harmonic
generation, the Kerr effect, etc. Finally, polarizabilities are
called static or dynamic if the perturbing field is static or
frequency dependent.

The importance of the linear term, �, is well known
in physics and chemistry.3 On the other hand, nonlinear
�i.e., beyond first order� optical effects have gained quite
some interest lately due to their technological applications in
optoelectronic devices. Nonlinear optical materials can be
used to convert light to shorter �bluer� wavelengths, which
can be focused to a smaller spot size. Shorter wavelength

light sources would hence yield higher density optical re-
cording media �such as digital versatile disks and compact
disks�. Other applications include tunable light sources, im-
age recognition systems, and adaptive optics.

Several methods have been used to calculate �hyper�po-
larizabilities of finite systems.4–8 In the static case, the sim-
plest approach is finite differences9 that use the definition of
the polarizabilities as derivatives of the dipole �or of the total
energy� with respect to the applied field. Calculations are
performed at various �small� field strengths, and the required
derivatives are evaluated numerically. This method is simple
and straightforward to implement. However, it requires many
total energy evaluations, and these need to have a very high
precision to obtain reasonable numerical derivatives. More-
over, it is not possible to generalize this idea to the dynamic
case.

Another widely used approach is the perturbation theory,
of which more than one flavor exists. In the sum-over-states
method4,10 the �hyper�polarizabilities are written as an infi-
nite sum over occupied and empty states, which involves the
ground state eigenvalues and dipole matrix elements. In a
similar vein, one can obtain the polarizabilities from the cor-
responding response functions written in the product basis of
occupied and empty states or in terms of Green’s functions.11

Note that these techniques can be used for both static anda�Electronic mail: xavier@tddft.org
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dynamic responses. Although widely used by the community,
these methods have several shortcomings. First, results are
often difficult to converge with the number �and quality� of
the empty states. Second, the scaling with the number of
atoms is quite unfavorable, making the application to the
study of large system hard, such as nanostructures or mol-
ecules with biological interest.

A different technique also used to obtain both static and
dynamic linear polarizabilities is the direct solution of the
time-dependent Schrödinger equation in real time.12 In this
way only the occupied subspace is needed and the scaling
with system size is excellent �O�N2�, where N is the number
of atoms�. However, this method cannot be easily general-
ized to extract hyperpolarizabilities.

A very interesting approach that essentially solves the
problems mentioned above is the Sternheimer equation.13 Al-
though a perturbative technique, it avoids the use of empty
states and has a quite good scaling with the number of atoms.
This method has already been used for the calculation of
many response properties7 such as atomic vibrations
�phonons�, electron-phonon coupling, magnetic response,
etc. In the domain of optical response, this method has been
mainly used for static response, although a few first prin-
ciples calculations for low frequency �far from resonance�
�hyper�polarizabilities have appeared.14–17 Recently, a refor-
mulation of the Sternheimer equation in a superoperator for-
malism was presented.18 When combined with a Lanczos
solver, it allows us to calculate very efficiently the first order
polarizability for the whole frequency spectrum. However,
the generalization of this method to higher orders is not
straightforward.

In this article, we propose a modified version of the
Sternheimer equation that is able to cope with both static and
dynamic responses in and out of resonance. The solution of
the first order Sternheimer equation gives us access to both �
and �. Higher order polarizabilities can be obtained from an
hierarchy of Sternheimer equations. Exchange and correla-
tion effects are treated at the level of density functional
theory19 �DFT� for static polarizabilities and time-dependent
DFT �TDDFT� �Ref. 20� for the dynamic case. Compared to
other quantum-chemistry approaches, density functional
methods have a somewhat lower accuracy but are lighter
numerically, allowing the study of much larger systems. In
the present work we focus on finite systems, but the method
has also been applied to periodic systems for the nonresonant
case.21 Note that in the field of DFT, the Sternheimer equa-
tion is often referred to as the density functional perturbation
theory.7

The rest of this article is organized as follows. In Sec. II
we present the derivation of the frequency-dependent Stern-
heimer equation and show how to obtain the linear polariz-
ability and first hyperpolarizability from its solution. In the
following section we give some details concerning the
implementation of our method. In Sec. IV we apply this
theory to several test molecules, comparing our results to
other calculations and experiments. Finally we present our
conclusions and a brief outlook.

II. THEORY

A. Linear response

Within TDDFT, the quantum state of an interacting elec-
tronic system is described by the time-dependent Kohn-
Sham equations �atomic units will be used unless explicitly
stated�,

i
�

�t
�m�r,t� = HKS�t��m�r,t� . �1�

The Kohn-Sham Hamiltonian is written as

HKS = −
�2

2
+ vext�r,t� + vHartree�r,t� + vxc�r,t� , �2�

where the first term corresponds to the kinetic energy, and
the following ones represent the external potential, the Har-
tree potential that describes the classical interaction between
the electrons, and the exchange-correlation term that ac-
counts for all nontrivial parts of the electron-electron inter-
action. Note that the Hartree and exchange-correlation terms
are time dependent as they are functionals of the �time-
dependent� density. This latter quantity can be evaluated
from the occupied Kohn-Sham orbitals,

n�r,t� = �
m

occ

��m�r,t��2. �3�

We are concerned with external potentials that are the sum of
a time-independent part, typically created by a set of nuclei,
and a monochromatic electric field vfield�r , t�
=�i=1

3 �iri cos��t�. If we assume that the magnitude of � is
small, we can use the perturbation theory to expand the
Kohn-Sham wave functions in powers of �. The first order
term reads

�m�r,t� = e−i��m+�i=1
3

�i�m,i
�1��t��m

�0��r� + 1
2�

i=1

3

��ie
i�t�m,i

�1��r,��

+ �ie
−i�t�m,i

�1��r,− ���� , �4�

where �m
�0��r� are the wave functions of the static Kohn-Sham

Hamiltonian H�0� obtained by taking �=0,

H�0��m
�0��r� = �m�m

�0��r� , �5�

and �m,i
�1��r ,�� are the first order variations of the time-

dependent Kohn-Sham wave functions.
From Eq. �4� and the definition of the time-dependent

density �Eq. �3��, we can obtain the time-dependent density

n�r,t� = n�0��r� + 1
2�

i=1

3

��ie
i�tni

�1��r,��

+ �ie
−i�tni

�1��r,− ��� , �6�

with the following definition of the first order variation of the
density:
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ni
�1��r,�� = �

m

occ

	��m
�0��r��*�m,i

�1��r,��

+ ��m,i
�1��r,− ���*�m

�0��r�
 . �7�

By replacing the expansion of the wave functions Eq. �4�
in the time-dependent Kohn-Sham equation �Eq. �1�� and
picking up the first order terms in �, we arrive at a Sternhe-
imer equation for the variations of the wave functions,

	H�0� − �m ± � + i�
�m,i
�1��r, ± �� = − PcHi

�1��±���m
�0��r� ,

�8�

with the first order variation of the Kohn-Sham Hamiltonian
as

Hi
�1���� = ri +� d3r�

n�1��r�,��
�r − r��

+� d3r�fxc�r,r��n�1�

��r�,�� , �9�

where Pc is the projector onto the unoccupied subspace. The
effect of this projector is to make the components of �m,i

�1�

��r , ±�� zero in the subspace of the occupied ground state
wave functions. In linear response, these components do not
contribute to the variation of the density;60 therefore, we can
safely ignore the projector. This is important for large sys-
tems as the cost of the calculation of the projections scales
quadratically with the number of orbitals.

The first term of Hi
�1���� comes from the external pertur-

bative field, while the next two represent the variation of the
Hartree and exchange-correlation potentials. The exchange-
correlation kernel is a functional of the ground state density
n�0� and is given by the functional derivative,

fxc�n�0���r,r�� = �	vxc�r�
	n�r��

�
n=n�0�

. �10�

In the previous equations we made use of the adiabatic ap-
proximation to write fxc as a frequency-independent quantity.
Equations �7� and �8� form a set of self-consistent equations
for linear response that only depend on the occupied ground
state orbitals.

Note that we included in Eq. �8� a positive infinitesimal
�. This term is essential to obtain the correct position of the
poles of the causal response function and, therefore, to obtain
the imaginary part of the polarizability. Furthermore, using a
small, but finite, � allows us to solve numerically the Stern-
heimer equation close to resonances, as it removes the diver-
gences of this equation.

By following the same kind of reasoning, we can arrive
at a hierarchy of Sternheimer equations for the higher order
terms in �. This will be needed for the calculation of 
, the
second order hyperpolarizability, or higher order
hyperpolarizabilities.22

B. Polarizability

The time-dependent dipole moment is defined as

�i�t� =� d3rn�r,t�ri. �11�

The polarizabilities are defined by the expansion of the di-
pole moment in terms of the electric field,

�i�t� = �i�0� + �
j

3

�ij�� j�� j cos�� jt� +
1

2! �
j,k=1

3

� j�k

��ijk�− � j − �k;� j,�k� cos�� jt�cos��kt� + ¯ .

�12�

We must notice that there are several conventions for the
definition of the �hyper�polarizabilities, which are conve-
niently detailed in Ref. 23. In this work we follow conven-
tion AB �where the prefactors 1 /n! are explicitly included in
Eq. �12�� that appears to be the most used by the theoretical
community. All referenced values have been converted to
this convention.

If we replace expression �7� in Eq. �11� and compare
with Eq. �12�, we can obtain a formula for the polarizability
in terms of the variation of the density,

�ij��� =� d3rnj
�1��r,��ri. �13�

The quantity most easily accessible experimentally is the
photoabsorption cross section that can be evaluated directly
from the linear polarizability,

�̄��� =
4
�

c
Im�̄��� , �14�

where �̄ is the trace of the polarizability tensor,

�̄��� = 1
3�

i=1

3

�ii��� . �15�

C. First hyperpolarizability

If for the dynamic hyperpolarizabilities we follow the
same procedure as before, we get an expression in terms of
the second order variation of the density that requires the
evaluation of higher order variations of the wave functions.
However, it is possible to get the first hyperpolarizability
directly from the first order variations by means of the 2n
+1 theorem. This theorem states that the nth order variations
of the wave functions are enough to obtain the 2n+1 deriva-
tive of the energy.7,24 This theorem can be expanded to the
dynamic case and allows us to write the first hyperpolariz-
ability � in terms of the first order variations of the wave
functions. After some algebra, we arrive at21
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�ijk�− �1;�2,�3� = − 4�
P

�
�=±1

��
m

occ � d3r�m,i
�1�*�r,− ��1�Hj

�1����2��m,k
�1� �r,��3� − �

mn

occ � d3r�m
�0�*�r�Hj

�1����2��n
�0��r�

�� d3r�n,i
�1�*�r,− ��1��m,k

�1� �r,��3� − 2
3 � d3r� d3r�� d3r�Kxc�r,r�,r��ni

�1��r,�1�nj
�1��r�,�2�nk

�1��r�,�3�� ,

�16�

where the first sum is over the permutations P of the pairs
�i ,−�1�, �j ,�2�, and �k ,�3� and the exchange-correlation
kernel, written in the adiabatic approximation, reads

Kxc�r,r�,r�� = � 	2vxc�r�
	n�r��	n�r��

�
n=n�0�

. �17�

The first hyperpolarizability tensor has 27 components
and is in general nonsymmetric. The quantity that is experi-
mentally relevant is

�
 = 1
5�

i=1

3

��zii + �izi + �iiz� , �18�

where z is oriented in the direction of the dipole moment of
molecule. Sometimes the equivalent quantity �vec=�z

= �5/3��
 is used.

III. IMPLEMENTATION

This scheme has been implemented using a real-space
grid based formulation in the code OCTOPUS.25 We have cho-
sen a real-space grid as it allows us a systematic convergence
of the results �hyperpolarizabilities are notoriously difficult
to converge with localized basis sets�. However, uniform
grids cannot easily describe all-electron atoms, so we replace
the electron-nuclear Coulomb interaction by Kleinman-
Bylander pseudopotentials. This is, however, a well con-
trolled approximation for the systems we are interested in.

In �TD�DFT several approximations exist for the
exchange-correlation term.26 In our approach we can treat
the exchange-correlation term at two levels; one is the
ground state exchange-correlation potential involved in the
calculation of the ground state wave functions and the other
is the exchange-correlation kernel. For the ground state, ex-
cept were noted otherwise, we use the local density approxi-
mation �LDA�; we will also use the exact exchange func-
tional in the Krieger-Li-Iafrate32 �KLI� approximation. For
the exchange-correlation kernel, we have decided to use, due
to its simplicity, the adiabatic local density approximation
�ALDA� �although our scheme is quite general and can, in
principle, be applied to any exchange-correlation functional�.

The LDA is a well studied approximation and is quite
reliable in the prediction of many properties. One important
main defect in this context is the wrong asymptotic part of
the LDA exchange-correlation potential that for neutral sys-
tems decays exponentially instead of falling as 1/r. This usu-
ally leads to small highest-occupied-molecular-orbital–
lowest-unoccupied-molecular-orbital gaps, which implies

systems that are too polarizable, in contrast to Hartree-Fock
where the gap is larger and the magnitudes of the polariz-
abilities are underestimated. The exchange and correlation
kernel will contribute to reduce the independent particle po-
larizability even at the ALDA level �this contribution for
extended systems is zero and as the long range behavior of
the exchange-correlation �XC� potential is not relevant in
this regime, this clearly points that the nonlocality of the XC
kernel as well as self-interaction correction are responsible
for the bad performance of LDA�. We will observe this over-
estimation in the calculations that follow. In fact, in the case
of compact finite systems, there has been indications that the
exchange-correlation potential seems to be more important
than the kernel.28 The situation is particularly problematic in
the case of long molecular chains,27 where standard
exchange-correlation functionals can greatly overestimate
polarizabilities when compared to many-body approaches.
Note, however, that this is not a deficiency of DFT, but of the
LDA approximation �and of many exchange-correlation
functionals�, that can, in principle, be treated29 by using more
sophisticated orbital dependent functionals such as the self-
interaction corrected LDA �Ref. 30� or the exact exchange.31

However, in the present orbital functionals, there is still a
significant correlation contribution that is not taken into ac-
count and is responsible for the discrepancies between theory
and experiment for long chains in the exact exchange
approach.27

Numerically, the central part of our scheme is the solu-
tion of the Sternheimer equation �Eq. �8��. This has the form
of a linear equation, where the operator to invert is the
shifted ground state Hamiltonian. As the shift is complex
�due to the i� term�, this operator is not Hermitian. There-
fore, we cannot use standard techniques common in the com-
munity, such as the simple conjugated gradient scheme, but
have to rely on more general �and involved� linear solvers.
Our choice was the biconjugate gradient stabilized method.33

Close to the resonance frequencies, the Sternheimer equation
becomes very badly conditioned, and the solution process
turns out to be very costly. The problem can be eased by the
use of preconditioning. We have found that a smoothing
preconditioner34 can dramatically improve the convergence
in these cases. Also for a small system the solution process
can be made less costly if we solve the Sternheimer equation
in the space of the unoccupied wave functions by orthogo-
nalizing the right-hand side of the Sternheimer equation with
respect to the occupied wave functions, although this would
not be practical for large systems as the orthogonalization
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process can become very demanding. Even with these tech-
niques, the process is much more costly for frequencies near
resonance. For example, for the CO case, the full self-
consistent solution of the Sternheimer equation for a single
frequency in a single direction requires around 1700 appli-
cations of the Hamiltonian; for the near resonance frequency,
approximately ten times more applications are required. As a
comparison, for the ground state DFT calculation, around
2000 Hamiltonian operations are needed.

As the right-hand side of the Sternheimer equation de-
pends on the linear variation of the density, the problem has
to be solved self-consistently. For this, we use similar strat-
egies as for the ground state calculation, mixing the linear
variation of the density using a Broyden scheme35 in order to
speed up the convergence of the self-consistent cycle.

The Poisson equation is solved using the interpolating
scaling function scheme proposed in Ref. 36. As this process
has to be done only once per self-consistency iteration, the
performance of the Poisson solver is not critical.

The total cost of calculating the response is of order
O�NKSNgM��, where NKS is the number of Kohn-Sham or-
bitals, Ng is the number of grid points, and M� is the number
of frequencies we desire �which is independent of the system
size�. This scaling is much better than for the approaches that
rely on expansions in particle-hole states, and even better
than for the ground state calculation that normally scales as
O�NKSNg

2� �due to the necessity of orthogonalizing the wave
functions�. We believe, therefore, that this method can be
used to study �hyper�polarizabilities of very large systems,
such as nanostructures or molecules with biological interest.
After obtaining the linear response, the evaluation of the hy-
perpolarizability from Eq. �16� has a cost proportional to
O�NKS

2 NgM�� but with a very small prefactor. Note that
O�N� �with N the number of atoms� schemes are available
for the ground state37 and static polarizability calculations.38

These linear scaling methods are based on “near sightness”39

or the idea of divide and conquer.40 The real-space treatment
used in our method would allow for the incorporation of
these strategies to reduce even further the numerical cost for
large systems.

IV. EXAMPLES OF APPLICATIONS

We decided to illustrate the implementation of our
method by applying it to some simple molecules that have
been well studied both experimentally and theoretically: CO,

H2O, and para-nitroaniline �PNA�.
In all our calculations we took the experimental geom-

etries CO=1.13 Å, HO=0.957 Å, and HÔH=104.5°; the ex-
perimental geometry of PNA determined through x-ray crys-
tallography can be found in Ref. 41. However, there are two
CH distances missing from the crystallographic data. For
these we followed Ref. 42 and took their theoretical values
�see Table 1 of Ref. 43�. In all cases the dipole moment of
the molecule was taken perpendicular to the z axis, for H2O
the molecule was considered in the yz plane, and in the case
of PNA it was taken in the xz plane. We used Troullier-
Martins norm-conserving pseudopotentials with core radii of
0.66 Å for H, 0.78 Å for C, and 0.74 Å for both N and O.

We used a simulation box composed of spheres centered
at each atomic position, with radii of 9.5 Å for CO, 7.4 Å for
H2O, and 5.3 Å for PNA. The points were distributed in a
regular grid with spacings of 0.20 Å for CO, 0.17 Å for
H2O, and 0.19 Å for PNA. With these parameters, hyperpo-
larizabilities are converged to better than 1%. As expected,
the simulation boxes required to converge the hyperpolariz-
abilities were much larger than the ones typically used in
ground state calculations, as these quantities have sizable
contributions from the regions far away from the nuclei. The

TABLE I. Comparison of static polarizabilities and hyperpolarizabilities for CO. Results are in a.u.

This work LDA HFa MP4a CCSD�T�a Expt.

� 0.0631 −0.1052 0.0905 0.057 0.0481b

�xx 12.55 11.25 12.00 11.97
�zz 15.82 14.42 15.53 15.63
�̄ 13.64 13.87c 12.31 13.18 13.19 13.09d

�xxz 8.35 8.24e 5.0 8.3 8.4
�zzz 33.34 33.52e 31.1 28.3 30.0
�
 30.03 30.00e 24.8 27.0 28.0

aFinite difference results from Ref. 44.
bExperimental result from Ref. 45.
cLDA basis set results from Ref. 46.
dExperimental result from Ref. 47.
eLDA basis set results from Ref. 48.

FIG. 1. Average photoabsorption cross section of the CO molecule, calcu-
lated within the adiabatic LDA. The line corresponds to the results obtained
through the solution of the Sternheimer equation, while the dots are obtained
through the solution in real time of the time-dependent Kohn-Sham equa-
tion. Low resolution experimental absorption cross section from Ref. 49. For
a more detailed comparison, the relevant experimental excitation energies
are at 8.51 eV �A 1��, 10.78 eV �B 1�+�, 11.40 eV �C 1�+�, and 11.53 eV
�E1�� �Refs. 49 and 50�.
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required simulation box size depends on the frequency of the
perturbation, being larger for higher frequencies. Finally, we
used the LDA parametrization by Perdew and Zunger30 to
approximate the exchange-correlation functionals.

We will start our discussion with CO. The results for
static properties are displayed in Table I. The results fully
agree with the other DFT-LDA calculations. Compared to
more sophisticated quantum-chemistry methods, the LDA
overestimates the values for the polarizabilities and the hy-
perpolarizabilities. This, as mentioned before, comes from a
deficiency in the asymptotic region of the LDA potential.

We now turn to the dynamic properties. In Fig. 1 we plot
the absorption cross section of the CO molecule obtained
with our approach and compare to the spectrum obtained
through the direct solution of the time-dependent Kohn-
Sham equations in real time. As expected, the two calcula-
tions agree perfectly, which validates our numerical imple-
mentation of the Sternheimer equations. Note that, even if
both methods have identical scalings, the solution of the
Sternheimer equation still has a larger prefactor if the whole
spectrum is required. This is due to the ill conditioning of the
linear system close to resonances. From Fig. 1 it is clear that
the two theoretical results are redshifted with respect to the
experimental curve. This shortcoming of the simple LDA can
be corrected by using functionals with the correct asymptotic
behavior.29

In Fig. 2 we present our calculations of the second har-

monic generation spectrum �
�−2� ;� ,�� of CO, together
with the available experimental results5 and previous theo-
retical data.42 Our results agree very well with previous DFT
results using the LDA. We can also see that the use of the
generalized gradient approximation BLYP �Becke 88 �Ref.
51� for exchange and Lee-Yang-Parr52 correlation� does not
change significantly the results. Using a hybrid functional,
the Becke 3 parameter B3LYP functional53 does reduce the
error, while Hartree-Fock �HF� results underestimate the
value for the hyperpolarizability. The best results are, as ex-
pected, obtained by coupled cluster calculations using
singles and doubles �CCSD�.

Now we turn to the H2O molecule. To test our imple-
mentation, we show, in Table II, the different components of
the hyperpolarizability tensor for �=0, 1.79, and 1.96 eV.
We see that our results compare well to previous theoretical
work.42 The small difference can be explained by the differ-
ent numerical methodologies �real-space grid and pseudopo-
tentials in our case and basis sets in Ref. 42�.

In Table III we show the static polarizability ��0,0�, the
static first hyperpolarizability �
�0;0 ,0�, the optical rectifi-
cation �
�0;� ,−��, and second harmonic generation
�
�−2� ;� ,�� for water. All dynamic values were calculated
for �=1.79 eV. This time we also have included results with
the KLI orbital dependent exchange-correlation potential

FIG. 2. �Color online� Second harmonic generation �
�−2� ;� ,�� of CO.
The inset shows a comparison of the results of this work �TDLDA� with
other available results. Exp., experimental results from Ref. 5; HF, Hartree-
Fock results from Ref. 42; LDA, BLYP, and B3LYP, DFT results from Ref.
42; and CCSD, coupled cluster results from Ref. 42.

TABLE II. Tensor components for the second harmonic generation ��−2� ;� ,�� of H2O.

�=0.00 eV �=1.79 eV �=1.96 eV

This work LDAa This work LDAa This work LDAa

�zzz −21.23 −19.14 −27.67 −25.22 −29.37 −26.81
�zxx −9.84 −8.82 −12.89 −11.45 −13.68 −12.11
�xxz −9.84 −8.82 −16.87 −15.57 −19.28 −17.90
�zyy −12.08 −11.67 −14.94 −14.39 −15.68 −15.09
�yyz −12.08 −11.67 −14.48 −13.99 −15.06 −14.56

aTheoretical results from Ref. 42.

TABLE III. Comparison of �hyper�polarizabilities of H2O for different DFT
calculations. CCSD�T� and experimental values are given as references. For
dynamic results �=1.79 eV.

��0,0� �
�0;0 ,0� �
�0;� ,−�� �
�−2� ;� ,��

This work �TDLA� 10.51 −25.89 −28.33 −34.71
This work �KLI/ALDA� 8.61 −11.75 −12.43 −14.03
LDAa 10.5 −26.1 −28.6 −35.1
BLLYPa 10.8 −27.9 −30.9 −38.8
LB94a 9.64 −17.8 −17.7 −20.3
LDAb 10.63 −23.78 −26.09 −32.12
BLYPb 10.77 −23.65 −26.11 −32.76
B3LYPb 9.81 −18.54 −20.11 −24.11
HFb 8.53 −10.73 −11.27 −12.52
CCSD�T�c 9.79 −18.0 −19.0 −21.1
Expt. 9.81d −22±9e

aGrid based calculations from Ref. 17.
bBasis set calculations from Ref. 42.
cResults from Ref. 54.
dExperimental results from Ref. 55.
eExperimental results from Ref. 56.
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combined with the ALDA exchange-correlation kernel. Con-
cerning LDA values, we can see that our results fully agree
with the results of Ref. 17 that also uses a grid based repre-
sentation, while basis set results from Ref. 42 differ by less
than 10%. We can see that all LDA and BLYP values over-
estimate the magnitude of �hyper�polarizabilities with re-
spect to experiment and coupled cluster calculations. The use
of more sophisticated exchange-correlation functionals, such
as LB94 or B3LYP, improves significantly the results, while
the KLI/ALDA scheme gives an underestimation of the mag-
nitude of �hyper�polarizabilities similar to Hartree-Fock re-
sults.

To conclude the discussion of water results, we plot in
Fig. 3 the frequency dependence of the optical rectification
in the visible and near ultraviolet regimes. It is clear that our
method not only works for small nonresonant frequencies
but also in the more complicated resonant regime.

Finally, we turn to a larger molecule: para-nitroaniline.
Our results for the second harmonic generation process in
this molecule are given in Fig. 4. There are two experiments
available: �i� a gas phase experiment57 performed for a single
frequency and �ii� para-nitroaniline in solvent for several
frequencies.58 The latter was corrected for the presence of
the solvent, but this correction is clearly incomplete as the
value from Ref. 58 for �=1.17 eV is still 10% larger that the

gas phase measurement.57 We include also other theoretical
values using DFT �Refs. 48 and 59� and CCSD.42 We can
observe that our results underestimate the solvent experimen-
tal results by about 15% for all available frequencies. In
comparison, B3LYP and CCSD results are seriously too
small at high frequencies, with values that are around 40%–
50% smaller than experiment. We think that the reason for
this discrepancy is the better description of the hyperpolariz-
abilities near resonance of our method. Furthermore, it uses a
grid based representation that describes better the regions far
from the nuclei in comparison with localized basis sets, al-
lowing for larger flexibility in capturing the dynamic changes
in the wave functions.

V. CONCLUSIONS

In summary, we have presented a method that allows the
calculation of both static and dynamic polarizabilities and
hyperpolarizabilities. Our approach is based on the Sternhe-
imer equation, within the formalism of time-dependent den-
sity functional theory, and requires the solution of a non-
Hermitian linear equation. This solution is obtained through
a generalization of the conjugated gradient method using a
real-space �basis-set-free� representation of the wave func-
tions. In this way we are able to obtain not only static quan-
tities but also the whole frequency dependence of the �hyper-
�polarizabilities even close to resonances. The scaling with
the number of atoms in the system is excellent, so we expect
that the method will be useful for the study of very large
systems. First applications to small benchmark molecules
yield quite good results in comparison with previous theoret-
ical approaches and experimental results.

One of the beauties of this approach is how easily it can
be generalized to higher orders and to handle other kinds of
static or dynamic perturbations. For example, phonon fre-
quencies, �resonant� Raman tensors, NMR tensors, forces in
the excited state, etc., can all be obtained by just changing
the right-hand side of the Sternheimer equations. The third
and higher order polarizabilities can also be obtained by
solving a hierarchy of Sternheimer equations that have the

FIG. 3. Calculated optical rectification �
�0;� ;−�� of H2O.

FIG. 4. �Color online� Second harmonic generation �
�−2� ;� ,�� of para-nitroaniline. Note that the y axis in the right panel is in logarithmic scale. exp. solv.,
solvent phase experimental results from Ref. 58; exp. gas, gas phase experimental results from Ref. 57; LDA/ALDA and LB94/ALDA, DFT basis set results
from Ref. 48; B3LYP, DFT basis set results from Ref. 59; and CCSD, coupled cluster results from Ref. 42. Some references use a different convention to
define hyperpolarizabilities; all the values shown here have been converted to convention AB.
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same form as the first order one. Work has already started to
extend our implementation in these directions.
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