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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00945145v2


Chaotic motion of charged particles in toroidal magnetic configurations
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We study the motion of a charged particle in a tokamak magnetic field and discuss its

chaotic nature. Contrary to most of recent studies, we do not make any assumption

on any constant of the motion and solve numerically the cyclotron gyration using

Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to

make long-time simulations. First considering an idealized magnetic configuration,

we add a non generic perturbation corresponding to a magnetic ripple, breaking

one of the invariant of the motion. Chaotic motion is then observed and opens

questions about the link between chaos of magnetic field lines and chaos of particle

trajectories. Second, we return to an axisymmetric configuration and tune the safety

factor (magnetic configuration) in order to recover chaotic motion. In this last setting

with two constants of the motion, the presence of chaos implies that no third global

constant exists, we highlight this fact by looking at variations of the first order of the

magnetic moment in this chaotic setting. We are facing a mixed phase space with

both regular and chaotic regions and point out the difficulties in performing a global

reduction such as gyrokinetics.

PACS numbers: 05.45.Ac, 52.25.Gj
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Contrary to old studies, most of recent research dealing with hot magnetized

fusion plasmas rely on numerical simulations. In the special case of a tokamak

magnetic configuration, the majority of the numerical codes are based on the

gyrokinetic theory. One of the assumptions made by this theory is to consider

the magnetic moment of the particles moving in the magnetic field as an exact

invariant of the motion. The straight consequence is to consider that all particle

trajectories are integrable for axisymmetric configuration and no electric field.

This assumption enables to make global reduction of the phase space and allows

for faster numerical simulations. In fact, the magnetic moment is often an adi-

abatic invariant and it can present variations over very large-time scales. These

remarks lay the ground for possible presence of Hamiltonian chaos in particle

trajectory and a non-constant magnetic moment. In this paper, we solve nu-

merically the motion of charged particles including the cyclotron gyration using

Hamiltonian formalism in the sixth dimensional phase space, without using any

assumption. We take advantage of a symplectic integrator allowing us to make

long-time simulations. First, considering an axisymmetric magnetic configura-

tion, we add a non-generic perturbation corresponding to a specific magnetic

ripple, breaking one of the invariant of the motion. Chaotic motion is then ob-

served whereas magnetic field lines are still integrable. So, we underline that

the link between the two notions is not automatic. Second, we observe chaos

of particle trajectories even in an axisymmetric configuration of the magnetic

field. For this purpose, we study the limit case in which the major radius of

the tokamak is infinite. The geometry becomes cylindrical. We tune the wind-

ing profile of magnetic field lines in order to create a separatrix in the effective

Hamiltonian of the cylindrical integrable system. We then perturb the system

by adding some curvature and returning back to the toroidal configuration. The

main result is that the chaotic region of the phase space of the system grows

when the major radius of the ”tokamak” decreases. The presence of a chaotic

trajectories and mixed phase-space implies that the magnetic moment of the

charged particles is not a global constant of the motion. We show its variations

and remark that, in the case of a chaotic motion, this variation are significant

and entice us to be careful before performing a global gyrokinetic reduction.
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I. INTRODUCTION

The motion of charged particles in a magnetic field is a classical issue of dynamical

systems and plasma physics, as for instance the fifty years old study made in1,2, before

a time when numerical simulations became mainstream, or more recent approaches as for

instance3,4. Usually, the main properties of particle trajectories strongly depend on the form

of magnetic field lines, making global features difficult to determine without using basic ap-

proximations. That’s why, the theory of plasma confinement into a tokamak magnetic field is

often studied using gyrokinetic theory. One of the assumptions made by regular codes based

on this approach is that the magnetic moment µ of confined particles is constant5–7. The

straight consequence is to consider that particle trajectories are integrable for axisymmetric

configuration and no electric field.

Indeed, trajectory of a charged particle in a tokamak idealized magnetic field is a six

dimensions system in which we can consider two exact invariants, the energy and the angular

momentum related to the toroidal invariance of the field. Moreover, the magnetic moment

is said to be an adiabatic invariant. So, in good conditions, µ is a quasi-constant on short

time but has some variations over very large-time scales (see for instance8–12). Due to

Arnold-Liouville Theorem, integrability of charged particle trajectory requires three exact

commuting invariants13. Suppose that this three quantities commute, which is not obvious,

we can transform the original system into an integrable approximation. However this may

change the nature of particles trajectories. The link between chaotic motion and variations

of the magnetic moment is an important topic14,15 and these remarks lay the ground for

possible presence of Hamiltonian chaos of particle trajectory and a non-constant magnetic

moment even in an idealized magnetic case.

In this paper, we integrate the Hamilton equations through a symplectic code to be able

to solve on one part the cyclotron motion on short time, and on an other part, to make long-

time simulations, without approximations. Moreover, contrary to classical approach based

on Runge-Kutta method, the main advantage of the symplectic codes is to keep constant

the phase space volume and eventually the invariants of the motion over large-time scales,

allowing us to study adiabatic variation of the magnetic moment.
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FIG. 1. Toroidal geometry and notations

Using this property, the question we would like to answer is the presence of Hamiltonian

chaos in charged particle motion in a toroidal magnetic field, studying two different cases.

First, we consider a non generic magnetic ripple modeling the finite number of coils sur-

rounding the tokamak chamber, and breaking one of the invariant of the motion. In the

second case, we want to create chaos to particle trajectories keeping an idealized magnetic

field but looking for chaos in a six-dimensional system is not simple. In order to find the

chaotic regions of the phase space, we decide to study the limit case in which the aspect ra-

tion (major radius vs minor one) of the tokamak tends to infinity. In this limit, the tokamak

becomes a cylinder and the motions of the charged particles are integrable. The method

is to create a separatrix in this simple system using the fact that the poloidal part of the

magnetic field in the tokamak chamber is not a well-known function. Then, we will return

to the toroidal case and look at the alteration of the integrability of the particle trajectories

around the separatrix. In the same time, this second method highlights variations of the

magnetic moment.

II. MODEL

A. Basic equations

A schematic view of the toroidal geometry is presented on fig 1. In the (r, θ, ϕ) coordi-

nates, we shall first consider the tokamak magnetic field of the following form16:
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B =
B0R

ξ
(êϕ + f(r) êθ) , (1)

in which ξ = R + r cos(θ), êϕ and êθ are the unit vectors associated respectively to the ϕ

and θ directions. The toroidal component along êϕ of the magnetic field is due to external

coils around the tokamak chamber whereas the plasma generated current inside the tokamak

leads to the creation of the poloidal component êθ. In this approximation the function f(r)

represents the amplitude of the poloidal field as a function of the radius and it is directly

connected to the so-called safety factor q of principal importance in tokamak physics :

f = r/qξ ≈ r/qR . (2)

In Eq. (2) for simplicity we shall use the approximation in order to simply have q = q(r).

Usually, the amplitude of the poloidal component is estimated at about 10% of the global

magnetic field but the safety factor is not an a priori fixed function and can actually be tuned

in some machines. So, respecting the flux conservation of the magnetic field ∇ ·B = 0, we

have the freedom to choose the function f(r). It is easy to show that any smooth function

depending only on r satisfies the flux conservation constraint.

Associated to Eq. (1), a vector potential can be chosen respecting the Coulomb gauge :

A(r) = B0

F (r)

ξ
êϕ − B0R log(

ξ

R
) êz , (3)

where F (r) =
∫ r

f . This choice of the magnetic field and associated potential vector cor-

responds to nested circular magnetic surfaces, which is a good approximation in the large

aspect ratio limit. In a more realistic situation, we may have for instance to take into account

that the magnetic surfaces have a slowly drifting center.

Given the magnetic field we consider the dynamics of a particle with charge e and mass

m, in this magnetic field. The Hamiltonian of the system writes

H =
(p− eA)2

2m
, (4)

where p = (px, py, pz) and x = (x, y, z) form three pairs of canonically conjugate variables.

The associated equations of motion are :





ẋ = (p− eA)/m ,

ṗ = e
m
(∇A) · (p− eA) .

(5)
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We readily notice in (5) that the particle velocity ẋ is given by v = (p− eA)/m.

B. Chaos, invariants and Adiabatic approximation

Looking for chaotic aspects of particle motions leads to look at the invariants of this

three-dimensional system. Indeed, finding three independent invariants commuting with

each other would imply integrability in the sense of Arnold-Liouville13. The energy of the

particle is an exact invariant equal to H = 1

2
mv2. Then in the case of the magnetic field

(1), the system is invariant by rotation around the êϕ axis. This entails that the conjugated

angular momentum M is a constant of the motion (Noether Theorem). We can define it

using the Lagrangian

L =
1

2
mv2 + eA · v , (6)

by

M =
∂L
∂ dϕ

dt

. (7)

Using this definition (7) and the value of the vector potential in the proposed gauge, we

obtain

M = ζ p · êϕ . (8)

Besides these two exact constants of the motion, we need a third integral in order to get

integrable motion. The third constant that is often used is the magnetic moment µ defined

at leading order by :

µ =
mv2

⊥

2B
, (9)

where v⊥ denotes the component of the velocity v perpendicular to the magnetic field B.

The magnetic moment (9) of a gyrating particle is used as a constant even though it is

often only an adiabatic invariant17–20. Assuming that these three integrals are in involution

we end up with an integrable system. Besides the involution, it is not obvious that the

adiabatic invariant is actually a real invariant, in fact it is likely that depending on the

magnetic configuration, this assumptions breaks down in some regions of phase space (see

for instance14,15), leading to local Hamiltonian chaos. The breaking of this assumption could
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be problematic, especially since in the last fifteen years a considerable effort had been devoted

to gyrokinetics. Hot magnetized plasmas are usually well described using a Maxwell-Vlasov

or Vlasov-Poisson description. This implies working with a time dependent particle density

function in six-dimensions. In gyrokinetics theory the adiabatic invariant is used to reduce

the dimensionality of phase space. This allows to not only to move to an effective 4 + 1

dimensional phase space, but allows also to avoid resolving in time the fast gyration around

field lines (cyclotron frequency), both of these features are very appealing when aspiring at

a full fledged numerical simulation of magnetized fusion plasmas in realistic conditions. In

this paper we do not consider the consequences of the presence of Hamiltonian chaos on this

theory, we however will look for the breaking of the adiabatic invariant. In this spirit we

consider so-called fast-particles, meaning in typical tokamak conditions, we consider particles

whose energy is from 10keV to around 3.5MeV , which is about the energy of α−particles

resulting from the fusion of Deuterium and Tritium nuclei. Looking at the variation of µ

given by Eq. (9) on time scales shorter than the cyclotron period, we observe a non constant

function, which at first approximation looks like a sinusoid with a specific period. Given

this fact, in what follows we now consider the average of µ on one or more cyclotron period

as the effective adiabatic invariant, but keep the same notation.

In order to look for chaos, a possibility would be to actually find traces of adiabatic

chaos, meaning chaos on adiabatic time scales. So, looking for the main characteristics of

the motion of the particle, we have to study long-term variations of µ. The requirements for

a numerical approach are thus that we must resolve short time variation meaning the fast

cyclotron motion but we also have to simulate on very long time to be able to capture possible

fluctuations of the magnetic moment. We therefore need to use a symplectic approach.

C. Numerical scheme

It is well known that using a classical Runge-Kutta scheme leads to important long-time

errors. Indeed the scheme is usually not symplectic, hence the time steps does not preserve

efficiently phase-space volume, in this case long-time studies can lead to the emergence of

sinks, sources and attractors, which do not belong to the realm of Hamiltonian chaos see for

instance field lines in21. In order to avoid this difficulty, numerical simulations have been

performed using the sixth order Gauss-Legendre symplectic scheme discussed in22. Since
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FIG. 2. top: Stability of the energy of the particule in two different cases : one integrable trajectory

choosen in the case of f = 0 (full line) and another picked up from a chaotic trajectory (dashed

line) in the case R = 3 (see Sec. IV) Bottom : Same comparison with the angular momentum M

we needed pairs of canonically conjugated variables, we remained in Cartesian coordinates.

This symplectic construction ensures the conservation of the symplectic volume and so, the

Hamiltonian nature of the purpose. Moreover, we observe on Fig. 1 that this construction

ensures also the stability of the energy and the angular momentum of the particle even

for very large times and chaotic trajectories (see Sec. IV) Last but not least, in order to

minimize numerical errors due truncations we use dimensionless variables. This allows to

use variables whose variations remain in a finite range. Our choice is performed as follows,

noting r̃, t̃ and B̃ our new variables. We write :
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r̃ = r/ra , (10)

t̃ = ωct =
m

eB0

t , (11)

B̃ = B/B0 , (12)

where ra is the minor radius (see Fig. 1), ωc is the cyclotron frequency, and B0 is the

typical magnetic intensity at the center of the torus. Thereafter, we will only consider these

dimensionless variables, and for clarity and readability we drop the˜and note (r, t, B) the

dimensionless variables.

In order to validate the accuracy of our numerical scheme and test our code, we first

consider the particular case in which there is no plasma inside the tokamak. In this config-

uration, the poloidal magnetic field is negligible. This property entails that the magnetic

field depends only on ξ. So, in polar coordinates (ξ, ϕ, z), B = Rêϕ/raξ. The application of

Newton’s second law, which computation is detailed in annex VA, demonstrates the drift

of the particle in z-direction (the direction depends on the sign of the charge). In fact the

system resumes to an integrable one and we end up with an effective Hamiltonian :

Heff0 =
ξ̇2

2
+

C2

2ξ2
+

ln2(ξ)

4
+ C ′ln(ξ) , (13)

in which C = ξ2ϕ̇ and C ′ are constants, which depend on the particle’s initial conditions. A

comparison between the (ξ, ξ̇) phase portrait obtained by our numerical scheme and the one

obtained by resolving the quadrature, using the Hamiltonian (13) is shown in Fig. 3. We

can notice an excellent agreement between the two curves, which validates our code. To be

more specific, the step time is chosen to be δt = 0.01, which means we should have about

100 points to resolve the gyration motion. The records in Fig. 3 cover a period of 4. 107

time steps with R = 3, C = 1 and C ′ = 0. Further analysis of the Hamiltonian (13), leads

as conclusions that there are no separatrix in phase space and that the equilibrium point

corresponds to a linear drift of the particle while all other trajectories are helical. As can be

noted in Fig. 3, when we zoom on one curve, we can compare in blue the exact trajectory

and in red the motion computed by the integrator. The two methods give the same results

with a precision better than our recorded digits, meaning better than 10−5. Another check

of the numerical accuracy of our computation will be performed in Sect. IV.
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FIG. 3. Top: phase portrait in (ξ, ξ̇) coordinates for the simple case without plasma in the tokamak

chamber. Bottom: zoom and comparison between a numerically computed trajectory and the

analytical one. Numerical integration is performed for 4. 107 time steps using a δt = 0.01.

III. CHAOTIC PARTICLE TRAJECTORIES USING RIPPLE EFFECT

A. The plasma with cylindrical symmetry first part

In the more general case when a plasma is present in the tokamak, the (ξ, ξ̇) plane looses

its specificity because the magnetic field B also depends on r through the expression of

the safety factor. In order to choose a configuration (14), we take a function that satisfies

q(0) = 1, that presents a maxima and that respects limr→∞ q(r) = 0 :

q(r) =
1 + ar

1 + r2
, (14)
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we recover the magnetic profile and the function f(r) using the approximate expression

in (2). In the following, we will fix the constant a = 10. It becomes then challenging to

visualize trajectories in the sixth-dimensional phase space. Indeed, the existence of two exact

first integrals leaves room for possible chaos, moreover the expected cyclotronic motion of

charged particles is likely to blur sections. Choosing a good section for visualizing trajectories

becomes therefore challenging. The first problem is related to the choice of the initial

conditions in a six-dimensional phase space. If we focus on fast particles corresponding to

the ashes of fusion, their initial conditions are not explicitly known, however we can consider

that their energy (mostly a kinetic one) is more or less known and about 3.5MeV and that

their initial location is close to the center of the chamber, where the plasma is dense and hot

and fusion reactions take place. However, the direction of the speed is uncertain, leaving

us with to two independent parameters, the norm being fixed by a chosen energy. Then we

have to find a suitable section in which we can distinguish integrable and chaotic trajectories.

If we only consider a classical section such as the poloidal (ξ, z) plane launching particles

with a fixed angle, things are not clear due to the Larmor gyration, we end up with “thick”

trajectories for all types of initial conditions. In order to better visualize we have considered

two possible options. In a first attempt we computed the time average of µ(t) over a large

number gyrations

µ̄(τ) =
1

τ

∫ τ

0

µ(t′)dt′ . (15)

Typically we computed µ̄ during a given initial time of the trajectory. We then performed

a section (ξ, z) and recorded positions each time µ(t) = µ̄ and dµ/dt > 0. We then get clear

thin and distinct integrable trajectory. However for some initial conditions and a different

type of magnetic field, we noticed a slow drift in µ(τ) such that we could not record any

data for large portions of the trajectory as µ(t) was not crossing the initially computed

finite time averageµ̄. In order to circumvent this last problem and noticing that µ(t) always

had a fast oscillating component, we finally settled for the following section: we only record

points when reaching local maxima of µ(t), meaning we plot the points when dµ/dt = 0

and d2µ/dt2 < 0. As a consequence, plotted points correspond to one Larmor gyration.

The resulting(ξ, z) section is presented in Fig. 4, where different trajectories are represented

and have different values of the energy but the same initial speed direction. On this this

section, we see two different types of trajectories: the elliptic ones (corresponding to so-

called passing particles) and the bananas, separated by a separatrix. They all appear to be
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FIG. 4. (ξ, z) section obtained with dµ/dt = 0 with no ripple. Four different trajectories with

different energies but same speed directions are displayed. Motion appears as integrable, we notice

the presence of a separatrix, distinguishing to types of orbits: so called passing orbits and banana

orbits.

integrable, and looking for Hamiltonian chaos is not easy. Indeed in this setting, because

the localization of the separatrix appears to depend on the initial speed direction, we can

only represent particles with the same speed directions and location initial conditions on

a given section, else we actually end up with a projection and characterized by apparent

crossing of trajectories. In order to look for Hamiltonian chaos one of the solutions is to add

a perturbation into the magnetic field.

B. The ripple effect

In order to trigger chaos more efficiently, we have introduced so called-ripple effect23.

This effect is mainly due to the finite number of coils around the tokamak and leads to the

breaking of the toroidal invariance of the magnetic field, with for instance a dependence of

the magnetic field on the toroidal angle ϕ. A direct consequence of the symmetry breaking is

that the angular momentum M ceases to be an invariant, the accessible phase space becomes

larger and chaos can occur even if another “hidden” constant of the motion related to the

magnetic moment exists.

In order to remain simple we shall consider a very specific and actually non generic

perturbation. This translate into a vector potential modified as:

12



FIG. 5. Top: (ξ, z) section obtained with dµ/dt = 0, and one trajectory with ripple and ε = 0.2.

Bottom: zoom of the section near the separatrix, we see the jumps between the passing orbits and

the banana ones.

A(r) =
F (r)

ξ
(1 + δ cos(kϕ))êϕ − log(ξ)êz , (16)

in which δ represents the amplitude of the perturbation entailed by the ripple and k the

number of coils. In the case of ITER, k = 18 andδ is estimated to 10−3 (the expression

is of the perturbation is though different). As mentioned the breaking of one of the exact

invariant of the motion makes easier the search of chaotic motion because the trajectory is

now confined in a five dimensional phase space. We show in Fig. 5 the motion of one charged

particle in the perturbed magnetic field, but for a perturbation amplitude δ = 0.2. Contrary

to the idealized magnetic case, chaos shows up and is characterized by separatrix breaking.

Starting from a banana motion, the particle trajectory is able to cross the separatrix to

become an elliptic passing one and vice versa. We though would like to insist that a priori
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we remain in a situation with mixed phase space. In the sense that if we start at a sufficiently

low energy, far from the separatrix with an elliptic trajectory, the motion does not present

sign of chaos at least for the length of time during which we computed and observed such

trajectories.

C. Link between chaos of magnetic field lines and chaotic trajectories of

charged particles

One of the usual cartoons that is used when describing magnetic confinement, is that

particles have a fast gyration around magnetic field lines, and if the Larmor radius is small,

particles follow more or less field lines. When looking at the previous sections in Fig. 4,

we directly see that this is likely not the case. However this remark, lead to numerous

studies on the chaoticity of magnetic field lines, having in mind a picture very much like the

advection of passive tracers in a stationary three dimensional flows, where passive tracers

simply follows velocity field lines21,24–33. The tokamak being a three dimensional object,

it has been shown for a long time that field lines of flux conservative fields are generically

chaotic in three dimensions. Assuming particles follow field lines it becomes natural to infer

that studying the chaos of field lines would have a direct impact on particles confinement

and trajectories. In the ideal tokamak, the magnetic field lines are not chaotic, due to the

existence of the invariance by rotation of an angle ϕ. In the chosen magnetic fields, the lines

winds helically around a given torus. Breaking the invariance, would lead to a real three

dimensional system and chaos of field lines. It is in this sense that the perturbation chosen

in Eq. (16) is non generic. Indeed in this last expression the magnetic field still does not

depend on r, nor has a component along r̂, hence the magnetic field lines still gently wind

around a torus, the variation of intensity is compensated by a non uniform winding, which

allows to keep a constant flux across a given disk of radius r. Field lines are therefore still

integrable, and a Poincaré section of these lines would not differ from the perfectly invariant

case.

We insist therefore on the fact that despite the regularity of the magnetic field lines, we

end up with chaotic particle trajectories. The connection between the two being therefore

not obvious. Given this remark, we shall reconsider the case with an rotational invariance,

and see if we can also find chaotic motion of charged particle. In order to illustrate this we
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reconsider our point of view and start with a cylindrical plasma tube instead of an empty

toroidal solenoid.

IV. IMPACT OF THE TOROIDAL GEOMETRY ON PARTICLE

TRAJECTORIES

A. Infinite torus

In this section, we use another approach to create chaotic trajectories in a toroidally

invariant magnetic field. For this purpose we start with a cylindrical magnetic geometry,

which is the limit, when R tends to infinity, of the toroidal system. In this approximation,

êϕ becomes a stationary vector and the idealized magnetic field can be rewritten as:

B = B0(êϕ + f(r)êθ) . (17)

A calculation described in appendix VB leads to and integrable system with a new effective

Hamiltonian:

Heff =
ṙ2

2
+

C ′′2

2r2
+

r2

8
+

F 2(r)

2
= Ec + V0(r) +

F 2(r)

2
, (18)

in which

C ′′ = r(vθ + r/2) (19)

is a constant. The potential V0(r) tends to infinity when r tends to zero or infinity. Between

these limits, it admits a minimum at r0 =
√
2C ′′. We can thus tune the function F (r) in

order to generate a separatrix in this effective Hamiltonian corresponding to the cylindrical

system. For this purpose we create a local maximum of the effective potential energy. We

remark that choosing a F (r), corresponds to fixing a specific so called q−profile of the

tokamak plasma magnetic confinement. We then perturb the system by returning to a

toroidal geometry, decreasing the value of R to a finite value. A possible choice for F can

be :

F = ar2 exp(−r²

c²
) , (20)

with a = 30 and c =
√
100. The details of the initial conditions which are fixed by C ′′ and

Heff are explained in appendix VB. Given these choices, the figure 6 shows the phase space
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FIG. 6. Top: phase space for a particle in the cylindric magnetic field governed by Hamiltonian (18).

Bottom: zoom near the separatrix and comparison between analytical curve solved by quadrature

and numerical integration.

(r, ṙ) of the effective system for a proton with the particular condition C ′′ =
√
10−5. As

expected, the motion depicted on Fig. 6 shows that the particle trajectory in this type of

magnetic field is integrable. We visualize the separatrix between two areas corresponding

to the potential wells and the rest of the phase space for particles with an energy of about

E = 600keV . This gives us another framework to successfully test the accuracy of our

numerical integration, especially in the vicinity of the separatrix as described in Fig. 6.

Looking for chaos, we shall now perturb this system going back to the toroidal geometry

and study the impact of the curvature onto trajectory properties.
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B. Particle trajectories in toroidal geometry

As mentioned we consider the toroidal aspect with finite large radius of the tokamak as

a perturbation of the cylindrical system. We now consider finite radius R, and will slowly

increase the “perturbation” by decreasing the value of R. We are eager to compare the

motion of a charged particle in the cylindrical geometry to the one in the toroidal system.

For this purpose we shall visualize the particle trajectories in the (r, ṙ) plane. In order to

perform a clean section, considering the action-angle variables associated to the integrable

Hamiltonian (18), section are usually best performed at constant action. Indeed if we only

consider a projection on the (r, ṙ) plane, as previously, the Larmor radius causes that we

end up with thick trajectories for all trajectories. Since computing the action is not a

straightforward task, we shall use the fact that for integrable systems H = H(I), a section

at constant I, corresponds to a section at constant energy. For this purpose, we reconsider

the effective Hamiltonian Heff (18), which in the cylindrical case can be rewritten as

Heff =
v2r
2

+
C ′′2

2r2
+

r2

8
+

v2ϕ
2

, (21)

and given the expression of C ′′ (19) we notice it corresponds to the actual kinetic energy of

the system up to some constant (2C ′′). However for a finite radius this Hamiltonian presents

temporal variation and becomes a time dependent function Heff(t). Its expression does not

change but, in the toroidal system, C ′′2 is not a constant anymore. So performing a section

at constant action corresponds to perform a section at constant Heff , which corresponds to

a section taken at constant C ′′, since of course the kinetic energy of a particle is a constant

of the motion.

We first start with a small perturbation, namely R = 10000 (in our dimensionless units R

is measured in minor radii). Results are displayed in Fig. 7. In fact most of the trajectories

remain regular, but when we consider a particle with initial conditions close to separatrix in

the integrable cylindrical case, represented in Fig. 7 something happens. In fact, the overall

picture has the same aspect as the cylindrical phase space (Fig. 6), except if we zoom around

the unstable equilibrium point, there the dynamics becomes very different and we see the

emergence of a chaotic region, often dubbed a stochastic layer. As in Sect. III, the chaotic

region is created by the breaking of the separatrix, in the current case we remain however

with an axisymmetric magnetic field. As such the presence of chaos in the charged particle
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FIG. 7. Top: (r, ṙ) section for Heff = Constant, R = 10000, E = 600keV . Initial conditions are

identical to the ones taken in the cylindrical case near the separatrix in Fig. 6. Bottom: zoom

of the trajectory near the unstable fix point, the integrable trajectory is drawn for comparison.

Hamiltonian separatrix chaos emerges.

trajectory indicates that the system is non-integrable and de facto rules out the existence of

a third constant of the motion, for instance one related to the magnetic moment.

In order to have a clearer picture we increase the perturbation and we decrease progres-

sively R from R = 10000 to R = 100. The global picture is displayed in Fig. 8. We consider

the same initial condition and display the section of one trajectory, we confirm the expected

trend that increasing the perturbation, corresponding to a reduction of the aspect ration R

leads to a growth of the chaotic region in the phase space. In order to be more conclusive,

we as well display regular trajectories obtained in these three settings using the same initial

condition as well. The emergence of chaos is a priori not a numerical artifact. When further

decreasing R, we notice that an other phenomenon appears when we pass from R = 100 to

18



FIG. 8. (r, ṙ) sections for Heff = Constant and R = 10000, 1000, 100 . We see an increase of

the stochastic layer as the major radius is reduced. For R = 100, we start to see some problems

with the section (see Fig. 9). For comparison tori corresponding to identical initial conditions

and the different radii are drawn in the regular region. Final time is t = 6104. For each regular

trajectory the initial conditions are: x0 = R + 0.05, y = 0, z = 0, vy = −F (r(t = 0)), vz =

−(C ′′/(x− R)− (x−R)/2.0), E = 590keV, v =
√

2E/m, vx =
√

v² − vy² − vz² , for the chaotic

trajectories they are the same but with E = 600keV.

R = 10; as can been seen on the section for R = 10 and R = 3 depicted in Fig. 9 and a

global apparent increase of chaos in the charged particle trajectory emerges. It is though

likely that in this range, the section at constant action is not suitable to correctly describe

the system, this is relatively surprising as the perturbation is still relatively small and we are

actually reaching the aspect ration of real machines such as the one of ITER for instance.

The problem of creating a good section in this region needs still to be solved, and one of

the problems of remaining with section made using the cylindrical action could be related

to monodromy issues.

We insist on the fact that in this setting the field lines are integrable and the Poincaré

section of the field lines is depicted in Fig. 10. This section should not change with the value

of R except maybe for the position of resonant surfaces filled with periodic field lines. We

notice that in this magnetic configuration, the field lines are periodic and purely toroidal at

r = c, radius for which the orientation of the winding of field lines changes.
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FIG. 9. Top: (r, ṙ) section for Heff = Constant, with R = 10, E = 600keV . Initial conditions are

identical to the previous cases, meaning the one taken in the cylindrical case near the separatrix in

Fig. 6. Bottom, same section but with R = 3. We notice in both plots what looks like an increase

of chaos, but that also that the sections at constant action appears as non satisfactory anymore.

C. Variation of the magnetic moment µ

As previously discussed the presence of chaos in charged particle trajectory in an axially

symmetric system with already two constant of the motion, implies that the system is not

integrable and as such it precludes the existence of a third constant of the motion, notably

one related to the magnetic momentum. In order to verify this statement we measured the

variations of the magnetic momentum using time averages of expression (9). For this purpose

we compare three different cases in Fig. 11. In this figure, the average µ̄ are computed on

about one hundred cyclotron gyrations. Except for initial kinetic energy, the three cases

have identical initial conditions. In the first case (upper plot), we take R = 10000 and
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FIG. 10. Poloidal section of magnetic field lines. The field is given by Eq. (1) and f is obtained

from Eq. (20). Field lines are purely toroidal and thus periodic at r = c = 0.1, where the winding

of the magnetic field lines changes orientation. We insist on the fact that this does not depend

on the value of R. For illustration we plotted the section of the particle trajectory with R = 10

depicted in Fig. 9.

an energy of about E = 450keV , this leads to an integrable trajectory, associated to this

characteristics, we note that the variations of µ̄ are small and periodic. In the second case

(middle plot of Fig. 11) we present the variations of the magnetic moment of a particle when

R = 10000 with an energy E = 600 keV , that corresponds to an energy close to the one of

the separatrix and a motion in the chaotic layer. As seen in Fig. 7, the motion of this particle

is chaotic and we notice in Fig. 11 that the variations of µ̄ are bigger than in the first case, we

actually have △µ̄/µ̄ ≃ 20%. In the third case, (lower plot in Fig. 11), we are considering the

situation of the particle moving in a system with the aspect ratios of real tokamaks, namely

R = 3 at an energy of E = 600keV . As anticipated by the left plot in Fig. 9, the particle

trajectory is chaotic and the variations of µ̄ are important △µ̄/µ̄ ≃ 60% and unpredictable.

This seems to confirm that in the phase space of such systems, there is no global third

constant of the motion. The existence of a constant related to the magnetic moment may be

locally true, so we expect the general picture of a mixed phase space with regions of chaos

and regions with regular motion. This nevertheless poses the problem of a global reduction

performed in for instance gyrokinetics theory in the Maxwell-Vlasov context.
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FIG. 11. Fluctuation of the finite-time averaged magnetic momentum versus time. The average is

performed over about twenty gyration periods. In the upper plot, the values for regular low energy

motion versus time are represented, R = 104, E = 450 keV . We can expect that a third constant

of the motion exists. For the middle plot we see fluctuations of about △µ̄/µ̄ ≃ 20%, we still have

R = 104 but higher energy E = 600 keV . In the lower plot we have fluctuations about 60%, we are

in the case of realistic ratios, R = 3 and E = 600 keV . In this last case, it is difficult to imagine

that a modified expression of the magnetic moment µ would become constant.
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V. CONCLUSION AND POSSIBLE CONSEQUENCES

Looking for chaos of charged particles trajectories evolving under the influence of a mag-

netic field with a toroidal structure, as for instance an axisymmetric one is not an easy issue.

One of the main difficulties is to visualize trajectories correctly, and the second problem is

to explore the phase space. Given these difficulties, in this paper we choose to highlight the

presence of chaos of particle trajectory in two specific cases. First, we take into account a

ripple effect, and as such we break a symmetry and the associated exact invariant of the

motion. This allows to insure an a priori non-integrable system and to localize and visu-

alize chaos more easily. This step allowed us to insist on the fact that the chaotic motion

of charged particles is not directly linked to the chaotic nature of magnetic field lines, as

indeed we considered a non generic perturbation which kept the regularity of field lines,

while generating chaos in particle trajectories. So this simple example allowed to underline

the fact that the link between chaos of particle trajectories and chaos of magnetic field lines

is not obvious. In the second case, we considered an axisymmetric configuration, with two

constants of the motion. We managed to observe chaos by tuning the winding profile of

magnetic field lines in order to create a separatrix in the effective Hamiltonian of the cylin-

drical integrable system and perturbing it slowly by adding some curvature and returning

back to the toroidal configuration. We exhibited that the chaotic region increases when the

aspect ratio (major radius) of the tokamak decreases. At the same time we measured the

fluctuations of the magnetic variations of µ̄ which are also directly correlated with the chaos

of the particle trajectories. The presence of chaotic trajectories in the case of an axisymmet-

ric field implies that no third constant of the motion exists as the motion is non-integrable.

This implies therefore that the magnetic moment can not be a global constant over all phase

space, and that this system corresponds likely to a system with mixed phase phase space,

with regions of regular motion and regions of chaotic motion. We may therefore expect all

the zoology and complex transport properties that is present in one and a half degrees of

freedom system, such as stickiness and associated memory effects. Another consequence

is that one has to be careful when performing gyrokinetic reduction. Indeed usually the

support of the particle density function described by the Vlasov-Maxwell system covers the

whole phase space. Since there are regions with chaos an non-constant magnetic moment,

a straightforward reduction is a priori not possible. A future line of research in this field,
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could be on how to perform the reduction only in specific regions of phase space, and how

what remains in the other regions is affecting the dynamics of the reduced distribution. In

real case scenarii, it is also likely that regions where the reduction a priori works may be

changing with the magnetic and electric fields, leading to possible intermittent reductions,

a more thorough study in localizing all these regions in phase space in realistic tokamak like

configurations appears therefore as a necessity.

ANNEXE

In these annexes we used Newton’s law, but Noether theorem and a Lagrangian formalism

can be more elegant.

A. Particle trajectory without plasma

In the simple case in which there is no plasma inside tokamak, we can write the magnetic

field as :

B =
B0R

ξ
êϕ . (22)

We apply Newton second law to a charged particle of mass m, charge q, moving in this

magnetic field. In polar coordinates (r, θ, z), we have :

r̈ − rθ̇2 = −B0Rq

mr
ż , (23)

rθ̈ + 2ṙθ̇ = 0 , (24)

z̈ =
B0Rq

mr
ṙ , (25)

where if we refer to Fig. 1, we actually have used the notations r = ξ and θ = ϕ. We

integrate Eq. (24) and (25) and obtain :

r2θ̇ = C , (26)

ż =
B0Rq

m
ln(r) + C ′ , (27)
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where C and C ′ are two constants.

We can then use expression (26) and (27) in Eq. (23), multiply it by ṙ and integrate to

obtain the effective Hamiltonian

ṙ2

2
+

C2

2r2
+

(B0Rq

m
ln(r))2

2
+

B0Rq

m
C ′ln(r) = Heff0 , (28)

We end up with an effective Hamiltonian (28) with one degree of freedom, and this shows

that particle trajectory in this simple magnetic field is integrable.

B. Particle trajectory in cylindrical geometry

A very similar calculation can be made in the case of a cylindrical geometry. We recall

that the magnetic field is given by

B = B0êz + f(r)êθ . (29)

We apply Newton second law to a charged particle of mass m, charge q, moving in this

magnetic field. In polar coordinates (r, θ, z), we obtain:

r̈ − rθ̇2 =
q

m
(B0rθ̇ − f(r)ż) , (30)

rθ̈ + 2ṙθ̇ = −qB0

m
ṙ , (31)

z̈ =
q

m
ṙf(r) , (32)

Note that the z−direction corresponds to axes along the constant êϕ (R = ∞), and not the

z depicted in Fig. 1. We integrate Eq. (32), and (31) as well multiplying it by r before hand

and obtain:

r2θ̇ +
eB0

2m
r2 = A , (33)

ż =
e

m
F (r) , (34)

where A is a constant and F (r) =
∫ r

f(x)dx.

Now, using expressions (33) and (34) in Eq. (30), which we multiply by ṙ before integra-

tion, we end up with:

m
ṙ2

2
+

mA2

2r2
+

(qB0)
2

8m
r2 +

q2

m
F 2(r) = Heff , (35)
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in which Heff is a constant. This system is also integrable, but contrary to the Hamilto-

nian (28) presents the interest to allow us to create a separatrix by tuning the function F (r),

in other words the so called q−profile.
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