600 research outputs found
The theory of magnetic field induced domain-wall propagation in magnetic nanowires
A global picture of magnetic domain wall (DW) propagation in a nanowire
driven by a magnetic field is obtained: A static DW cannot exist in a
homogeneous magnetic nanowire when an external magnetic field is applied. Thus,
a DW must vary with time under a static magnetic field. A moving DW must
dissipate energy due to the Gilbert damping. As a result, the wire has to
release its Zeeman energy through the DW propagation along the field direction.
The DW propagation speed is proportional to the energy dissipation rate that is
determined by the DW structure. An oscillatory DW motion, either the precession
around the wire axis or the breath of DW width, should lead to the speed
oscillation.Comment: 4 pages, 2 figure
EGAM Induced by Energetic-electrons and Nonlinear Interactions among EGAM, BAEs and Tearing Modes in a Toroidal Plasma
In this letter, it is reported that the first experimental results are
associated with the GAM induced by energetic electrons (eEGAM) in HL-2A Ohmic
plasma. The energetic-electrons are generated by parallel electric fields
during magnetic reconnection associated with tearing mode (TM). The eEGAM
localizes in the core plasma, i.e. in the vicinity of q=2 surface, and is very
different from one excited by the drift-wave turbulence in the edge plasma. The
analysis indicated that the eEGAM is provided with the magnetic components,
whose intensities depend on the poloidal angles, and its mode numbers are
jm/nj=2/0. Further, there exist intense nonlinear interactions among eEGAM,
BAEs and strong tearing modes (TMs). These new findings shed light on the
underlying physics mechanism for the excitation of the low frequency (LF)
Alfv\'enic and acoustic uctuations.Comment: 5 pages,4 figure
Dual deficiency of angiotensin-converting enzyme-2 and Mas receptor enhances angiotensin II-induced hypertension and hypertensive nephropathy
Angiotensin-converting enzyme-2 (ACE2) and Mas receptor are the major components of the ACE2/Ang 1-7/Mas axis and have been shown to play a protective role in hypertension and hypertensive nephropathy individually. However, the effects of dual deficiency of ACE2 and Mas (ACE2/Mas) on Ang II-induced hypertensive nephropathy remain unexplored, which was investigated in this study in a mouse model of hypertension induced in either ACE2 knockout (KO) or Mas KO mice and in double ACE2/Mas KO mice by subcutaneously chronic infusion of Ang II. Compared with wild-type (WT) animals, mice lacking either ACE2 or Mas significantly increased blood pressure over 7-28 days following a chronic Ang II infusion (P < .001), which was further exacerbated in double ACE2/Mas KO mice (P < .001). Furthermore, compared to a single ACE2 or Mas KO mice, mice lacking ACE2/Mas developed more severe renal injury including higher levels of serum creatinine and a further reduction in creatinine clearance, and progressive renal inflammation and fibrosis. Mechanistically, worsen hypertensive nephropathy in double ACE2/Mas KO mice was associated with markedly enhanced AT1-ERK1/2-Smad3 and NF-κB signalling, thereby promoting renal fibrosis and renal inflammation in the hypertensive kidney. In conclusion, ACE2 and Mas play an additive protective role in Ang II-induced hypertension and hypertensive nephropathy. Thus, restoring the ACE2/Ang1-7/Mas axis may represent a novel therapy for hypertension and hypertensive nephropathy
An Ionic Molecular Glass as Electron Injection Layer for Efficient Polymer Light-Emitting Diode
An ionic molecular glass based on a dendronized monoammonium salt has been facilely synthesized and utilized as an interfacial electron-injection layer in a light-emitting diode (LED). The characterization of a yellow-green LED that involves an Al cathode and a thin layer of the new compound spin cast from a methanol solution has shown device performances comparable to those obtained with a Ba/Al cathode. Photovoltaic measurements under white light irradiation reveal that a thin layer of the new compound can significantly increase the built-in potential and thus facilitate electron injection from an Al cathode. Furthermore, it is interesting to observe that the new ionic salt could undergo reorganization on the emissive conjugated polymer layer, which leads to the formation of nearly uniform nanoaggregates
Comparison of endosperm amyloplast development and degradation in waxy and non-waxy wheat
The waxy wheat shows special starch quality due to high amylopectin content. However, little information is available concerning the development and degradation of amyloplast from waxy wheat endosperm. To address this problem, waxy wheat variety, Yangnuo 1, and a non-waxy wheat variety, Yangmai 13, were chosen to investigate the development and degradation of endosperm amyloplast during wheat caryopsis development and germination stage respectively using histochemical staining and light microscopy. Changes of morphology, the soluble sugar and total starch content were indistinguishable in the process of caryopsis development of two wheat varieties. The developing endosperm of non-waxy was stained blue-black by I2-KI while the endosperm of waxy wheat was stained reddish-brown, but the pericarp of waxy and non-waxy wheat was stained blue-black. In contrast to nonwaxy wheat, endosperm amyloplast of waxy wheat had better development status and higher proportion of small amyloplast. During seed germination many small dissolution pores appeared on the surface of endosperm amyloplast and the pores became bigger and deeper until amyloplast disintegrated. The rate of degradation of waxy wheat endosperm amyloplast was faster than non-waxy wheat. Our results may also be helpful to the use of waxy starch in food and nonfood industry
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
Moon Shadow by Cosmic Rays under the Influence of Geomagnetic Field and Search for Antiprotons at Multi-TeV Energies
We have observed the shadowing of galactic cosmic ray flux in the direction
of the moon, the so-called moon shadow, using the Tibet-III air shower array
operating at Yangbajing (4300 m a.s.l.) in Tibet since 1999. Almost all cosmic
rays are positively charged; for that reason, they are bent by the geomagnetic
field, thereby shifting the moon shadow westward. The cosmic rays will also
produce an additional shadow in the eastward direction of the moon if cosmic
rays contain negatively charged particles, such as antiprotons, with some
fraction. We selected 1.5 x10^{10} air shower events with energy beyond about 3
TeV from the dataset observed by the Tibet-III air shower array and detected
the moon shadow at level. The center of the moon was detected
in the direction away from the apparent center of the moon by 0.23 to
the west. Based on these data and a full Monte Carlo simulation, we searched
for the existence of the shadow produced by antiprotons at the multi-TeV energy
region. No evidence of the existence of antiprotons was found in this energy
region. We obtained the 90% confidence level upper limit of the flux ratio of
antiprotons to protons as 7% at multi-TeV energies.Comment: 13pages,4figures; Accepted for publication in Astroparticle Physic
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
- …