515 research outputs found

    Temperature effects on growth, colony development and carbon partitioning in three <i>Phaeocystis</i> species

    Get PDF
    Phaeocystis is an ecologically important marine phytoplankton genus that is globally distributed. We examined the effects of temperature on the 3 most common species: P. globosa, P. antarctica, and P. pouchetii, which grew at 16-32, 0-6, and 4-8 ° C, respectively. P. pouchetii did not form colonies; P. globosa formed colonies at 16, 20, and 24 ° C, and P. antarctica colonies were observed at all temperatures. More cells were partitioned into the colonial form at lower temperatures than at higher temperatures for P. globosa and P. antarctica. P. globosa colony size decreased with temperature, whereas P. antarctica colony size showed no distinct response to temperature. Numbers of cells per unit of colony surface area of P. globosa and P. antarctica were lowest at temperatures where highest growth rates and colonial abundances were observed; more organic carbon was partitioned into solitary cell biomass at higher temperatures, whereas the carbon concentration of colonies was not affected by temperature. Maximum quantum yield of P. antarctica and P. globosa exhibited subtle responses to temperature, whereas that of P. pouchetii was relatively invariant within the growth temperature range. Future changes in sea surface temperature may dramatically alter the ecology and biogeochemical cycles of systems dominated by Phaeocystis spp. and result in further degradation, via oxygen depletion and altered food web structure

    Study of the Hindrance Effect in Sub-barrier Fusion Reactions

    Full text link
    We have measured the fusion cross sections of the 12C(13C, p)24Na reaction through off-line measurement of the beta-decay of 24Na using the beta-gamma coincidence method. Our new measurements in the energy range of Ec.m. = 2.6-3.0 MeV do not show an obvious S-factor maximum but a plateau. Comparison between this work and various models is presented.Comment: 3 pages, 3 figures, Talk at the "10th International Conference on Nucleus-Nucleus Collisions", Beijing, 16-21 August 200

    Do we understand heavy-ion fusion reactions of importance in stellar evolution?

    Get PDF
    Since the first observation of hindrance in heavy-ion fusion, many extrapolated cross sections for astrophysically interesting fusion reactions, such as 12C + 12C, 12C + 16O, 16O + 16O, 24O etc. need to be reexamined. In this contribution, the effects of fusion hindrance at extreme low energies are discussed

    Equivalence between non-bilinear spin-SS Ising model and Wajnflasz model

    Full text link
    We propose the mapping of polynomial of degree 2S constructed as a linear combination of powers of spin-SS (for simplicity, we called as spin-SS polynomial) onto spin-crossover state. The spin-SS polynomial in general can be projected onto non-symmetric degenerated spin up (high-spin) and spin down (low-spin) momenta. The total number of mapping for each general spin-SS is given by 2(22S−1)2(2^{2S}-1). As an application of this mapping, we consider a general non-bilinear spin-SS Ising model which can be transformed onto spin-crossover described by Wajnflasz model. Using a further transformation we obtain the partition function of the effective spin-1/2 Ising model, making a suitable mapping the non-symmetric contribution leads us to a spin-1/2 Ising model with a fixed external magnetic field, which in general cannot be solved exactly. However, for a particular case of non-bilinear spin-SS Ising model could become equivalent to an exactly solvable Ising model. The transformed Ising model exhibits a residual entropy, then it should be understood also as a frustrated spin model, due to competing parameters coupling of the non-bilinear spin-SS Ising model

    Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and Îœp nucleosynthesis processes

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∌10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous Îœp-process simulations.Peer reviewe

    Measurements of the observed cross sections for e+e−→e^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb−1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+e−→π+π−π0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+K−π0π0K^+K^-\pi^0\pi^0, 2(π+π−π0)2(\pi^+\pi^-\pi^0), K+K−π+π−π0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π−)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/Ïˆâ†’ÎłÏ•Ï•â†’ÎłK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/Ïˆâ†’ÎłÎ·(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb−1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0→Ό+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+→Ό+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+→Ό+X)BF(D0→Ό+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25
    • 

    corecore