912 research outputs found

    Crystal growth and quantum oscillations in the topological chiral semimetal CoSi

    Get PDF
    We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The sample's high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the -2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures

    Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation

    Get PDF
    Expanding far beyond traditional applications in optical interconnects at telecommunications wavelengths, the silicon nanophotonic integrated circuit platform has recently proven its merits for working with mid-infrared (mid-IR) optical signals in the 2-8 {\mu}m range. Mid-IR integrated optical systems are capable of addressing applications including industrial process and environmental monitoring, threat detection, medical diagnostics, and free-space communication. Rapid progress has led to the demonstration of various silicon components designed for the on-chip processing of mid-IR signals, including waveguides, vertical grating couplers, microcavities, and electrooptic modulators. Even so, a notable obstacle to the continued advancement of chip-scale systems is imposed by the narrow-bandgap semiconductors, such as InSb and HgCdTe, traditionally used to convert mid-IR photons to electrical currents. The cryogenic or multi-stage thermo-electric cooling required to suppress dark current noise, exponentially dependent upon the ratio Eg/kT, can limit the development of small, low-power, and low-cost integrated optical systems for the mid-IR. However, if the mid-IR optical signal could be spectrally translated to shorter wavelengths, for example within the near-infrared telecom band, photodetectors using wider bandgap semiconductors such as InGaAs or Ge could be used to eliminate prohibitive cooling requirements. Moreover, telecom band detectors typically perform with higher detectivity and faster response times when compared with their mid-IR counterparts. Here we address these challenges with a silicon-integrated approach to spectral translation, by employing efficient four-wave mixing (FWM) and large optical parametric gain in silicon nanophotonic wires

    Linear optical absorption spectra of mesoscopic structures in intense THz fields: free particle properties

    Get PDF
    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on non-equilibrium Green functions, is formulated, and applied to the calculation of linear optical absorption spectrum for several non-equilibrium mesoscopic structures. We show that a blue-shift occurs and sidebands appear in bulk-like structures, i.e., the dynamical Franz-Keldysh effect [A.-P. Jauho and K. Johnsen, Phys. Rev. Lett. 76, 4576 (1996)]. An analytic calculation leads to the prediction that in the case of superlattices distinct stable steps appear in the absorption spectrum when conditions for dynamical localization are met.Comment: 13 Pages, RevTex using epsf to include 8 ps figures. Submitted to Phys. Rev. B (3 April 97

    Structural behavior and superconductivity of YBa2Cu3Ox

    Full text link
    The compound YBa2Cu3Ox was given various oxidation treatments over a range of oxygen pressures from 0.02 to 200 MPa and temperatures up to 1223K. A tetragonal to orthorhombic phase transformation was observed, leading to superconducting behavior below 94K. The orthorhombic unit cell parameters (i.e. volume, bond lengths, and axial distortions) were found to correlate with the superconducting transition temperatures. These correlations are rationalized in terms of the interrelationship of oxygen stoichiometry with the lattice parameters of the orthorhombic phase. The nature of superconductivity in YBa2Cu3Ox and La2CuO4 is related to the Cu-O coordination polyhedra and an explanation is proposed for the observed multiple superconducting transitions in YBa2Cu3Ox.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26602/1/0000143.pd

    Scattering Theory of Photon-Assisted Electron Transport

    Full text link
    The scattering matrix approach to phase-coherent transport is generalized to nonlinear ac-transport. In photon-assisted electron transport it is often only the dc-component of the current that is of experimental interest. But ac-currents at all frequencies exist independently of whether they are measured or not. We present a theory of photon-assisted electron transport which is charge and current conserving for all Fourier components of the current. We find that the photo-current can be considered as an up- and down-conversion of the harmonic potentials associated with the displacement currents. As an example explicit calculations are presented for a resonant double barrier coupled to two reservoirs and capacitively coupled to a gate. Two experimental situations are considered: in the first case the ac-field is applied via a gate, and in the second case one of the contact potentials is modulated. For the first case we show that the relative weight of the conduction sidebands varies with the screening properties of the system. In contrast to the non-interacting case the relative weights are not determined by Bessel functions. Moreover, interactions can give rise to an asymmetry between absorption and emission peaks. In the contact driven case, the theory predicts a zero-bias current proportional to the asymmetry of the double barrier. This is in contrast to the discussion of Tien and Gordon which, in violation of basic symmetry principles, predicts a zero-bias current also for a symmetric double barrier.Comment: 15 pages, 6 figures, REVTE

    Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.

    Get PDF
    Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems

    Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam.

    Get PDF
    The main objective of this study is to assess regional landslide hazards in the Hoa Binh province of Vietnam. A landslide inventory map was constructed from various sources with data mainly for a period of 21 years from 1990 to 2010. The historic inventory of these failures shows that rainfall is the main triggering factor in this region. The probability of the occurrence of episodes of rainfall and the rainfall threshold were deduced from records of rainfall for the aforementioned period. The rainfall threshold model was generated based on daily and cumulative values of antecedent rainfall of the landslide events. The result shows that 15-day antecedent rainfall gives the best fit for the existing landslides in the inventory. The rainfall threshold model was validated using the rainfall and landslide events that occurred in 2010 that were not considered in building the threshold model. The result was used for estimating temporal probability of a landslide to occur using a Poisson probability model. Prior to this work, five landslide susceptibility maps were constructed for the study area using support vector machines, logistic regression, evidential belief functions, Bayesian-regularized neural networks, and neuro-fuzzy models. These susceptibility maps provide information on the spatial prediction probability of landslide occurrence in the area. Finally, landslide hazard maps were generated by integrating the spatial and the temporal probability of landslide. A total of 15 specific landslide hazard maps were generated considering three time periods of 1, 3, and 5 years

    Photoemission Spectroscopy and Atomic Force Microscopy Investigation of Vapor Phase Co-Deposited Silver/Poly(3-hexylthiophene) Composites

    Full text link
    Nanocomposite matrices of silver/poly(3-hexylthiophene) (P3HT) were prepared in ultrahigh vacuum through vapor-phase co-deposition. Change in microstructure, chemical nature and electronic properties with increasing filler (Ag) content were investigated using in-situ XPS and UPS, and ambient AFM. At least two chemical binding states occur between Ag nanoparticles and sulfur in P3HT at the immediate contact layer but no evidence of interaction between Ag and carbon (in P3HT) was found. AFM images reveal a change in Ag nanoparticles size with concentration which modifies the microstructure and the average roughness of the surface. Under co-deposition, P3HT largely retains its conjugated structures, which is evidenced by the similar XPS and UPS spectra to those of P3HT films deposited on other substrates. We demonstrate here that the magnitude of the barrier height for hole injection and the position of the highest occupied band edge (HOB) with respect to the Fermi level of Ag can be controlled and changed by adjusting the metal (Ag) content in the composite. Furthermore, UPS reveals distinct features related to the C 2p (Sigma states) in the 5-12 eV regions, indicating the presence of ordered P3HT which is different from solution processed films.Comment: Scudier and Wei provided equal contributio

    Mother and Adolescent Reports of Associations Between Child Behavior Problems and Mother-Child Relationship Qualities: Separating Shared Variance from Individual Variance

    Get PDF
    This study contrasts results from different correlational methods for examining links between mother and child (N = 72 dyads) reports of early adolescent (M = 11.5 years) behavior problems and relationship negativity and support. Simple (Pearson) correlations revealed a consistent pattern of statistically significant associations, regardless of whether scores came from the same reporter or from different reporters. When correlations between behavior problems and relationship quality differed, within-reporter correlations were always greater in magnitude than between-reporter correlations. Dyadic (common fate) analyses designed for interdependent data decomposed within-reporter correlations into variance shared across reporters (dyadic correlations) and variance unique to specific reporters (individual correlations). Dyadic correlations were responsible for most associations between adolescent behavior problems and relationship negativity; after partitioning variance shared across reporters, no individual correlations emerged as statistically significant. In contrast, adolescent behavior problems were linked to relationship support via both shared variance and variance unique to maternal perceptions. Dyadic analyses provide a parsimonious alternative to multiple contrasts in instances when identical measures have been collected from multiple reporters. Findings from these analyses indicate that same-reporter variance bias should not be assumed in the absence of dyadic statistical analyses

    The Human Papillomavirus E6 Oncogene Represses a Cell Adhesion Pathway and Disrupts Focal Adhesion through Degradation of TAp63β upon Transformation

    Get PDF
    Cervical carcinomas result from cellular transformation by the human papillomavirus (HPV) E6 and E7 oncogenes which are constitutively expressed in cancer cells. The E6 oncogene degrades p53 thereby modulating a large set of p53 target genes as shown previously in the cervical carcinoma cell line HeLa. Here we show that the TAp63β isoform of the p63 transcription factor is also a target of E6. The p63 gene plays an essential role in skin homeostasis and is expressed as at least six isoforms. One of these isoforms, ΔNp63α, has been found overexpressed in squamous cell carcinomas and is shown here to be constitutively expressed in Caski cells associated with HPV16. We therefore explored the role of p63 in these cells by performing microarray analyses after repression of endogenous E6/E7 expression. Upon repression of the oncogenes, a large set of p53 target genes was found activated together with many p63 target genes related to cell adhesion. However, through siRNA silencing and ectopic expression of various p63 isoforms we demonstrated that TAp63β is involved in activation of this cell adhesion pathway instead of the constitutively expressed ΔNp63α and β. Furthermore, we showed in cotransfection experiments, combined with E6AP siRNA silencing, that E6 induces an accelerated degradation of TAp63β although not through the E6AP ubiquitin ligase used for degradation of p53. Repression of E6 transcription also induces stabilization of endogenous TAp63β in cervical carcinoma cells that lead to an increased concentration of focal adhesions at the cell surface. Consequently, TAp63β is the only p63 isoform suppressed by E6 in cervical carcinoma as demonstrated previously for p53. Down-modulation of focal adhesions through disruption of TAp63β therefore appears as a novel E6-dependent pathway in transformation. These findings identify a major physiological role for TAp63β in anchorage independent growth that might represent a new critical pathway in human carcinogenesis
    corecore