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Linear optical absorption spectra of mesoscopic structures in intense THz fields:
Free-particle properties
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and Department of Mathematics, University of California, Santa Barbara, California 93106

Antti-Pekka Jauho
Mikroelektronik Centret, Technical University of Denmark, Building 345east, DK-2800 Lyngby, Denmark
(Received 3 April 1997; revised manuscript received 26 November)1997

We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor
structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and
applied to the calculation of linear optical absorption spectrum for several nonequilibrium mesoscopic struc-
tures. We show that a blueshift occurs and sidebands appear in bulklike structures, i.e., the dynamical Franz-
Keldysh effec{A.-P. Jauho and K. Johnsen, Phys. Rev. L&#.4576(1996]. An analytic calculation leads
to the prediction that in the case of superlattices distinct stable steps appear in the absorption spectrum when
conditions for dynamical localization are mg§0163-182@08)03412-3

I. INTRODUCTION example consists of ultrafast transients. Consider an undoped
semiconductor structure subject to an external intense static
Light absorption can be described in terms of a proces§eld. At some time instant a population of carriers is pumped
where polarization is induced into the medium. To linearinto the conduction band. These mobile charges will rear-
order in the electric-field component of the traversing light,range themselves so as to screen the external field. While the
&, the induced polarizability? can be expressed in terms of screening is building up, the susceptibility of the system is a
the dielectric susceptibility as two-time function. Using femtosecond laser techniques,
which are able to probe the time scales in which screening is
building up, experiments investigating the nonequilibrium
Pt = f_ocdt')((t't,)g(t')' properges%f sch)h systems havegbeengperfor?ﬂ’éhf:I
Band-gap engineering techniques of semiconductor com-
If the absorbing medium is in a stationary state, the suscegounds, such as molecular-beam epitaxy, allow spatial
tibility depends only on the difference of its time arguments,modulation of the band gap down to atomic resolution. It is
i.e., x(t,t')=x(t—t"). Under these conditions Maxwell's possible to break the translational symmetries of bulk crys-
equation for€ is an algebraic equation in frequency spaceals, induce new ones, and reduce the degrees of freedom
and one finds that the absorption is proportional to the imagiwith these techniques. Construction of systems which are
nary part of y(w). However, under nonequilibrium condi- effectively two dimensiona{2D) and even one dimensional
tions, which are the topic of the present study, the suscepticlD) with regard to electron mobility and optical properties
bility is a two-time function, and Maxwell's equation is today a standard procedure. Another example of such
remains an integral equation even in the frequency domairmanmade structures are superlatti¢8s’s), i.e., an engi-
Further progress hinges upon two steps: first, one has to deeered periodic potential in the growth direction of the
velop methods to calculate the nonequilibrium susceptibilitysample. The interplay between the mesoscopic properties
function, and, second, one has to specify what sort of lightand the dynamical properties can lead to many interesting
wave or pulse is used in the absorption experiment. Th@henomena such as absolute negative resistance for the trans-
present work addresses both of these problems. As far as tert properties? and the rich features in the optical proper-
time dependence of the probe pulse is concerned, two spéies which are the subject of the present work.
cific situations are examined. First, consider an undoped The purpose of this paper is to present a theoretical study
semiconductor placed in an intense THz field; we assumef light absorption in mesoscopic systems subject to intense
that the THz field is not able to induce polarization, i.e., noTHz [far-infrared (FIR)] fields. We consider undoped sys-
carriers are excited in the conduction band. Such a system tems, which implies that there are no carriers in the conduc-
in a nonequilibrium state, i.e., the susceptibility is a two-timetion band. Thus near-infraredIR) interband absorption is
function. Properties of such systems were investigated exhe dominant absorption process. The nonequilibrium nature
perimentally using the free-electron lag&EL) as a source of the system necessitates the use of special theoretical tools;
for intense THz field$;many interesting properties were dis- we have chosen to apply nonequilibrium Green-function
covered, and others predicted, such as photon-assistéeichniques®*In particular, this method allows us to treat
tunneling? dynamical localization and absolute negativethe intense FIR field nonperturbatively, and defines a frame-
conductivity? the ac Stark effedt,the dynamical Franz- work in which screening can be treated systematically. Our
Keldysh effect, and the formation of sidebarid$A second analysis consists of the following steps. Starting from a two-
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band Hamiltonian, we derive a formal expression for theThe retarded susceptibility tensor can be identified from Eq.

interband susceptibility in terms of nonequilibrium Green (2),

functions. Next, we use the general expression to derive the _

NIR absorption spectrum for noninteracting partic(€ou- . ] , ,

lomb interactions will be discussed in a subsequent paper; Xim(t:t )__%a(t_t H[Pm(t").PI(D]). 3)

see also beloyv Finally, we give explicit results for a num- ) _ . o

ber of special case@D, 2D, and 1D systems and superlat- Following the standard line of attack in nonequilibrium
1 1 13 . -

tices and discuss the physical implications. The relation oftheory,” we first consider the causétime-orderegresponse

our work to previous papers addressing similar topics can b/nction

summarized as follows. Bulk systems were studied previ- i

ously in Refs. 5 and 6, where the relevant energy scales were Xe(tt)=— g(T{Pm(t')Pmt)}}, (4)

recognized, and the blueshift of the band edgee below

was ptr_etlj:(ctetd. Th(fat[;hotonlc StUbbaEd structLtJre, Wlh'cg ﬁ' A hereT is the time-ordering operator. In nonequilibrium, the
essential feature of the present work, was not resolved, NoWe, 5| response function is replaced by its contour ordered

ever. Concerning absorption in superlattices, in a recen ounterpartyC. (t,t")— x&(7,7'), where the complex-time

15 ; i i )
work ™ a detailed numerical study, using Monte Carlo meth variablesr and 7’ reside on the Keldysh contour. Finally we

ods, was presented. In the present work we are, by analyti . ) . . .
means, able to explain the “surprising” emergence of satel gbtaln the retarded tensor by an analytic continuation using

. : . . the Langreth rule$®
gf: gf?hkes rzTJ:rr]]:risc%(le(\:/\t/rourrIP which escaped explanation on bé We use Eq(1) to write the susceptibility as
This paper is organized as follows. In Sec. Il we derive a i
general expression for the two-time dielectric interband sus-  xf (r,7')=— > A dm(@[(Tefal(r)bg(7)
ceptibility. Section Il relates the susceptibility to the mea- ak

sured absorption, considering both continuous-wave mea- xal(7)b (M)

surements as well as short white light pulses. The single- k k

particle Green functions and the corresponding spectral +<Tc{ag(7’)bq(7’)bl(7)ak(T)}>
functions, which determine the susceptibility, are defined in

Sec. IV, and related to the generalized density of states +(Tc{bg(r’)aq(r’)al(r)bk(r)})

(GDOS, which, in turn, is shown to determine the optical . ot

absorption. Section V considers bulklike systems, and we H(Te{bg(7)ag(7" )b (nax( )], (5

obtain analytic results for the GDOS, which is analyzed inhare T is the contour-ordering operator. In equilibrium
some detail in terms of the sideband picture. The propertieg, two-cparticle correlation functions occurring in E@) '
of light absorption in superlattices are treated in Sec. VI,,,51d be found via the Bethe-Salpeter equafibin what
Specific attention is paid to conditions where dynamical IO'follows, however, we shall consider the noninteracting limit
calization occurs, apd we show how it affects the absorp_tiora)f Eq. (5). This approach is motivated by the following con-
spectrum. Finally, in Sec. VIl we make some concludinggjgerations. The noninteracting limit will allow significant
remarks. analytic progress, and the results, which we believe are in-
teresting in their own right, form the basis for an interacting
IIl. DIELECTRIC INTERBAND SUSCEPTIBILITY theory, to be reported elsewhefgee also beloy Second,
the experimental findings of absorption in quantum wells,
We shall now derive an expression for the dielectric in-sypject to intense FIE can be largely understood on the
terband susceptibility using nonequilibrium Green functionspasis of the concepts presented here. A quantitative assess-
The microscopic operator describing interband polarizationment requires a nonequilibrium theory for the two-particle
IS Green functions, i.e., a numerical solution of the nonequilib-
rium Bethe-Salpeter equation. We have recently completed
. . this program, and give our results in a subsequent paper. For
P(t)zzk dilay(t)by(t) +bi(tak(t)]. (1 noninteracting particles we can use Wick’s theorem to fac-
torize the two-particle correlation functions. Thus the non-
equilibrium susceptibility can be expressed in terms of

Here d, is the dipole matrix elemengy(t) [a(t)] are the  single-particle Green functions. The following Green func-
conduction-band electron creatiqannihilation operators, tions are needed:

and bl(t) [by(t)] are the valence-band creatigannihila-

tion) operators. The linearized Hamiltonian associated with a ge(k,79,7") = —i{T{ay T)ﬁ;(’r’)}), (6)

polarization P(t) induced by the external field(t) is

Hp(t)=—P(t)- &(t). Linear-response theory now yields the 9o (k. 70, 7)== I(T{b(Dbi(7)}), (7)

Cartesian component of the induced interband polarization

due to a weak external fielét an(k, 710, 7") = —i{Te{a(nbi(7)}), 8
and

PO=- ¢ f:,dt'9<t‘t'><[5“')'P'<‘”>'5“')- @ Gbalk 750, 7') = —i(Tefbi(Dal(7)}). )
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We assume that the frequenfyof the FIR field is such that Note that in equilibriumy;(T,7)= x|(7). As shown in
fiQl<eqy. In typical experiments on Ill-V systems, is of  Sec. lll A, the relevant quantity for continuous-wave mea-
the order of an eV, whilé() is a few meV, so this condition surements at frequenay, is

is satisfied. Consequently, interband transitions due to the

perturbing field can be ignored, and the Green functions re- e i

lated to the Zener effect, i.e.gup(k,7:9,7") and Imx[m(T,w|):Im{f dr e"‘"TX{m(T,T)] (20
Opa(k,7;9,7"), are neglected from this on. The first-order o

nonequilibrium susceptibility thus reads to first order inQ/w, (here(Q) is the FIR frequency Now

i Xim(T,7) is a real quantity, as is evident from Ed.9). Us-
Xim(T, 7' )=~ 7 > di(K)dm(a)[ge(k, 70, 7)9,(q, 7" ; K, 7) ing the properties of the Fourier transform, we obtain
qk

+ . ’ ’. ) i o dw
gu(kyT,an )gc(qlT ,k,T)] (10 X{m(T-wl):_%E d; (k) d (k) ﬂ{g:(k!T!w)
The analytic continuation to real times is performed with the K o
Langreth rules® which state that if on contour X[ (K, T, 0— )+ g (KT, 0+ o)]
C(r,7")=A(r,7")B(7",7), (11 +05 (kT ) [ 03K, T,0— o)

then the retarded function on the real-time axis is +gL(k, T, 0+ o)}, (21)

r =A< ! ary! + r ! < ! . . . . . . .
CHLU)=AT(LU)BY, D+ A(LE)BA(T,D. (12 Since x|,(T,7) is real, the imaginary part of its Fourier

We thus have transform is obtained through
()=~ S AR (RgE (K )Gk !
Xim{® poqe GUOAmIOLGe TG DG, TGE IMXin(T,01) = 5 DX To0) = Xin( T, = )] (22)
' < ’ < ! !
ek tt)g; (it +g; (ktt)gek,t',b) We can therefore write, in terms of the spectral functions
+g,(kt,t)gg (kt' 0], (13
| i Ak T,0)=i[gik T,0) g3k T.0)] (23
with
. and
g=(t,t")=i{c'(t")c(t)), (14)
! H ! ! k1T1 :. ' k1T1 - a kyTa 1 24
gLt =o' —ndc.c’y), (19 Ak To)=ilg (kT o) =gk o)l (24
that

g'(tt)=—iat—t){{c(t),c(t)}). (16)
We recall the following relations:

[g=(tt)]*=—g=(t'".1),
[ga(t’t/)]*:gr(t!’t)’ (17)

[g"(tt) ] =g%(t",1).
For certain applications, e.g., Sec. Il A, it is convenient to

introduce the center of mass variabl@s=(t'+t)/2 and  The lesser functions can be expressed in the ¥orm
r=t—1".2° In terms of these variables the symmetry rela-

tions of the Green functions are g§(k,T,w)=ifa(k,T,w)Aa(k,T,w), (26)
[9™(T,D]*=—g~(T,— 1),

* do

Mo = 57 S 640K |~ 5245 (K T,0)

X[A,(kT,0—w)—A,KT,o+wo)]
+gU<(k,T,w)[Ac(k,T,a)—w|)
Ak T, 0+ w)]}. (25)

where f,(k, T,w) is a generalized particle distribution for

a * (T _ particles of species, andA,(k,T,w) is the corresponding
"1 =g(T,~ ), (18 spectral function. In accordance with our assumption about
[g"(T, ") ]* =gXT,— 7). no FIR field-induced interband transitions, we can set

fo(k,T,w)=0 (zero occupation of conduction bandand
The retarded susceptibility expressed in center-of-mass coothat f,(k,T,w)=1 (all valence states are occupjeth the
dinates is general case, e.g., when considering nonlinear effects in the
probing light field, one would have to find(k,T,w) via,
say, a Monte Carlo solution of semiconductor Bloch
equation&®?! or by a direct integration of quantum kinetic
. equations fog; (k,T,®).™® With these assumptions the sus-
+9, (kK T,nge(k,T,—71)]—H.c}. (19 ceptibility reduces to

Xin(T.1)= = 5 2 (TG (KT, DG T, =)
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-1 » dw of this section, expresses the fact that the nonequilibrium
Im Xlrm(val):% Zk dl(k)dm(k)j oAk T, 0) interband susceptibility function can be calculated from a
o joint spectral functionwhich is a convolution of the indi-
X{AK, T,0— @) — Ak, T, 0+ w))} vidual band spectral function. A similar result is known from
high-field quantum transport theofy: there the field-
:i z d (k)dm(k)fx d—wAv(k,T,w) depe.ndent scat.te'ri.ng rate'is expressed as a joint spectral
—w 27 function for the initial and final states.

S ALK T 0+ ) 27 In order to make a connection to the equilibrium case, we

et V- recall the exact identitygjq(k,w)ziaecgk,w)n(w) (n(w) is
The second equality comes about because we do not considéye Fermi function and from Eq(25) (Refs. 17 and 2B8we
overlapping bands. Equatid@7), which is the central result obtain

* dw

1
Im X{m(wl): - % EK dl(k)dm(k) fﬁm Z{nc(w)ac,ecﬁkvw)[av,eq(kiw_wl)_av,ecﬁkvw—i_wl)]+nv(w)av,eq(kaw)

X[ac edK,w— o)) —ac ed K, 0+ @)1} (28

Heren.(w) is the conduction-band electron occupation func-The polarization can then be expressed as
tion, and n,(w) is the corresponding function for the

valence-band electrons. % . ,
Pt)y=£&(r,t) | dt'eatty(t,t"). (33
I1l. ABSORPTION COEFFICIENT IN TERMS
OF THE TIME-DEPENDENT DIELECTRIC This form is suggestive: it is advantageous to exprgss
SUSCEPTIBILITY in terms of the center-of-mass and difference coordi-
The dielectric susceptibility links the induced polariza- hates,x'(t,t')— x'[3(t+t'),t—t']. The characteristic time
tion P to the field€ via scale for the center-of-mass time is set by the “slow” fre-

guency(}, while the difference time varies on the scale of the
“fast” frequency ;. We thus gradient expand
XTHEHE) =t =X (Lt=t) + 3t —t) X" (tt—t')+,
where the prime indicates differentiation with respect to the
slow temporal variable. Substitution in E3) then yields
1 8*D(t) (we introduce a variable=t—t')
2 —_——_——— =
V)~ oz =0, (30
where D(t)=&(t)+4mP(t). The absorption coefficient P(t)zé’(r,t)f dr e X (t, )+ (= 3 1)x" (t,7)+-]
a(w) is defined as the inverse of the length which light has to
traverse in the medium at frequen@yin order for the inten-
sity of the light to decrease by a factor oélin equilibrium,
D(w)=[1+47x(w)]&(w)=e(w)&(w), and the absorption .
coefficient® becomes pe t)ex;{ !

P(t)= ﬁwdt’x(t,t’)é’(t’). (29)

The wave equation for light is then

_ Jd 41 -
=5(r,t){xr(t,w|)+&—mﬁzXr(t,w|)+"‘

2

2 ﬁt(?w|

X (to). (34)

Im x(w)

TR (31)

a(w)=4mw Equation (34) can now be used in the Maxwell equation;

note, however, that upon Fourier transforming the dominant
Heren?(w) =3[ Re e(w)+|e(w)[] is the refraction coefficient frequency comes frong(t), and we can keep in x(t,w))
which usually depends only weakly @n In nonequilibrium  fixed. The slow time variation will from this on be indicated
this analysis must be generalized, and we consider two spéy T. Proceeding as in deriving the static res(8t), we
cial cases:(i) monochromatic continuous wave measure-identify thetime dependerabsorption coefficient
ments, andii) white light short-pulse measurements.

A. Continuous-wave measurements ar(w)=47w +0(Q/w). (35

Im X"(T, o)
cnr(w)
Consider a system out of equilibrium which is probed by

a light field (which is assumed to be wealif frequencyw; : If the driving force is periodic inT (the harmonic time de-
pendence due to a FEL laser is an important special)case

E(r,t)=& exdi(rk—wt)]. (32)  then the average absorption coefficient is
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— 1 IV. SINGLE-PARTICLE GREEN FUNCTIONS
alw)= Toorod oo T @T(@) AND SPECTRAL FUNCTIONS
1 Im ST In this section we determine the single-particle Green
— f dT 47w m x'(T,») (36) functions and their associated spectral functions. We show
Toeriod J period chy(w) that, under conditions specified below, that the convolutions

of the spectral functions, encountered in Sec. I, result in
to all orders inQ/w. We stress that herg'(T,w) is Fourier ~ effective single-band spectral functions.
transformed with respect to the difference variahl®elow
we sha!l represent numerical examples for the generalized A. Single-particle Green functions
absorption coefficient.
Let A be the vector potential which defines the FIR field.
B. Short white light pulse measurements Considering harmonic, translationally invariant external

) ) fields, we choose
Consider now an instantaneous measurement performed

on a nonequilibrium system: at some specific titme ,, the .

system is probed with a weak pulse whose duration is short At)=—E sin((2t) (41)
compared to the characteristic dynamics of the system. We Q

approximate the pulse with function in time:

_ which represents the physical uniform electric field
E(r,t)=E ™ S(t—tp). (37  E cos(). The two-band single-particle Hamiltonian for a

o ) ~ system subject to the external FIR field can generally be
In principle, construction of such a pulse would take infiniteyritten in the form

energy due to its time dependence. The pulse is therefore
hardly “weak.” When we refer to the pulse as weak we

assume thaf,<1; that is, the intensity of the light is small H=> [E K+ € Alala;+e,| k+ € A btbﬁ}
at all frequencies. Using Eq37) in the Maxwell equation O A R A R
yields the dispersion relation
, + > {Frol[At)]albp +H.c). (42)
kK’

K=y [1+ 4y 38
[+ dmy (0.t (38

Here Fg'g,[,&(t)] describes the mixing of the bands due to
This dispersion relation looks quite similar to the one ob-Zener-like processes caused by the intense FIR field. We
tained in Sec. Il. The difference is that hex&(w,t,) is  shall now argue that for realistic parameter values the mixing
Fourier transformed with respect t6, not the difference term can, in fact, be neglected. Le be the band gap
variabler. In the present case we obtain the time-depender(tegzlA for bulk GaA$. In order for the THz field to mix

absorption coefficient the bands, i.e., to yield a finit; [ A(t)], 2n-photon pro-
| . | cesses have to occur with=[ €,/2A Q1 ]. (Here[x] indicates

m w|,t i - -

(@)= 470 X (o _ (39 the integer part ok.) Note that only even-order photon pro

cesses are allowed due to parity. In Ref. 7, we showed that
the 2n-photon process carries spectral  weight
For examples of experiments which probe systems in thiQTrJﬁ(ef/ZﬁQ), wheree;=e?E?/4mQ? is the average clas-

cny(w)

manner, see, e.g., Refs. 10 and 11. sical kinetic energy obtained by an electron placed in the FIR
field. Thus band mixing can be expected to be negligible
C. Differential transmission spectrum if \][26g may(€:/27Q)<1. Considering typical frequencies

Consider a sample of thickness then the ratio of the (#Q=2,...,20meV) and strongest THz fields that are at-
intensity transmitted through the sample with its initial inten-tainable in FEL facilities,E=1 MV/m, one finds that the

sity is T(w)zexp:—Z(w)L] whereZ(w) is the absorption argument of the Bessel function is of the order of unity.
coefficient of the sample. Experimental setups for measurinﬁll?r‘:\é?\égr’avr:ghsitrr:ese(xp)iin}gtrexnismogstxi g:g?l: dogeaclj ];ﬁv;
the change in absorption due to externally controlled pertur-e ime \;vhere bzfr?c? mixing is of n(; consequence and will
bations commonly measure the differential transmissio 9 9 q

. 0 enceforth be neglected.
spectrum(DTS) defined by The Dyson equation for the retarded and/or advanced

free-particle Green function is
T(@)~To(w) P

Dlo)=—=510)

(40

Iﬁﬁ—éa

| o . E+EA(t)DgL’ﬁ(lZ,t,w:5<t—t'>, (43
Here T(w) is the transmission with the perturbation present fi

and Ty(w) is the transmission through the unperturbed

sample. Below, we give examplesBfw) in nonequilibrium  wherea e {c,v} is the band index. This equation is readily
situations. integrated with the solutions
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i
% O(*+t¥xt’)
i t
Xexp — 7 Jt/ds €,
and the spectral functioA=i(g"'—g?) becomes

~ 1 it
Akt t")= 3y exp{ 7 f ds e,
t’

B. Convolution of the spectral functions

r/a(k,t,t )

K+ S &
+g (s)

|

(44)

L. e .
K+ A(s)
(45

According to Sec. Il, the susceptibility is obtained through

8865

K+

. 1 (> .
Aeﬁ(k,T,w):gﬁ dre'®”
,&(s) ]

i T+7/2
xXexp — f ds eq
fi Jr—m2
(51

In the case of tight-binding minibands for a type-I superlat-
tice (with perioda), we write the bands as

1 hzk2
ec[k] )\ cos{akH)+ >m (52
e
2k2
N 1
elkl==3\, cos{ak“)—z—mh—eg, (53

the trace of a convolution of the spectral functions. We shall _ o _ .
now show that within the present model the convolution ofwhere ¢ is the electron miniband widthy, is the corre-
spectral functions results in an effective single-band spectraiponding bandwidth for the holes, is the (crysta) momen-

function.
In terms of the center of mass variablesst—t’ and
T=(t+t')/2, we write the spectral functions as

. 1 (- .
Aa(k,T,w)ZgJ’ dr e'“”
T+17/2
Xexp[——f ds e,
—7/2

Then the convolution

. e
k+%A(S) .

(46)

©

b(E,T,w.)=ﬁf

%Ae(E,T,w)AU(E,T,w—wQ
(47)

of the two spectral functions becomes

T+7’/2
b(k,T,w) =~ fdre'w'TeXpr——f
712

. oe . . oe .
X| e k+gA(S) —€, k+gA(S) )]
(48)
In the case of parabolic bands we have
. 2k? . h2Kk?
ec[k]=2—me, ev[k]=—2—mh—eg. (49

tum component parallel to the growth direction of the super-
lattice, and k;, is the magnitude of the component
perpendicular to the growth direction. The effective band
thus becomes

1 h2K?
€efll k] = 5 \err cOSak)) + + €9 (54
wherel =\ 1\, is the effective bandwidth, which again is
of the same form as the original bands. This shows that also
for superlattices the convolutio7) leads to an effective
spectral function of the original form.

In terms of the effective spectral function the imaginary
part of the susceptibility can be written as

Im Xim(To0)= 57" 2 Ae(KT,01), (59
k

where we assume that the dipole matrix elementkanele-
pendent. In equilibrium the trace of the spectral function
yields the density of states for the system. Analogously, the
GDOS (Ref. 7) is defined as

1 ,
p(Tow)=— 2 Ae(K.T,a), (56)
k

allowing us to write the absorption coefficient as

2’772(1)||d|2
cnh

p(T,w). (57)

at(w)~

Herem is the electron massyy, is the positive hole mass, For the remainder of this work we shall investigate the prop-
andeg is the band gap. We define a single effective band fokerties ofp(T,w,) for various systems. The concept of a time-

the system,

2k2

eer K]=ec[K]—€,[K]= 5— e, (50)

dependent density of states was discussed earlier in a specific
context in Ref. 24. Here we have made the definition rigor-
ous.

C. Gauge invariance

where mgg=m,m,/(m.+my,) is the effective reduced mass.
Thus the effective band is parabO"C like the Original bands To conclude this Sec'non we br|eﬂy comment on the
but with their reduced mass. It is therefore evident that th%auge invariance. From the outset, we m|ght have chosen to
convolution, writing Aeﬁ(kT W)= b(kT ), is a spectral work within the gauge-invariant formulation which has been
function for a parabolic band, developed in the field of high-field transp8rt®3 Consid-
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ering translationally invariant systems, correlation functions In order to perform the Fourier transfor(60) we utilize

are made gauge invariant with the transformation the identity®
. . e tds .
kek+ =g | 5 A(s). (58) explix sin 6)= >, J (x)exp(iné), (64)
t n

However, the absorption coefficient follows from a trace op-yhere j (x) are Bessel functions; we shall henceforth write
eration(56), which makes the transformati¢8) redundant: 5 _ <= to simplify the notation. The generalized den-
a simple change of variables when performing the trace unéi?y ofns=t:;t°;s becomes '
does Eq(58), and proves that our formulation of the absorp-
tion is gauge invariant. 4K
(T, &)=, | S—role—e—e+1hQ
p (T,G) - (2 )nfl 5[6 €K Ef+ ]
V. PARABOLIC BANDS N T

In this section we shall investigate the properties of the
generalized density of states for systems which can be effec- X Jaj
tively described by Hamiltonians yielding parabolic bands,
be it in one, two, or three dimensions. We write the effective (65
single-band dispersion as The dimensionality is entirely contained in the remaining
O h2K2 momentum integrationfd"k/(27)"~ 1. We note that Eq.
ek]= W-ﬁ- €g- (590 (65 implies a shift of the absorption edge lky. The term
eff 172 in the Diracé function gives rise to photonic sidebands.
For convenience we writen=my;, and sete,=0 which Since J,(X) is an even function, the density of states is

shifts the energy axis such that the reference point is th@variant under the transformatida— —E, as expected. In
band-gap energy. We calculate the generalized density afe following subsections we shall consider the 1D, 2D, and

eRE i ws
ZW sin(Q1T) J|+j ECOSZQT) .

states from 3D systems separately, and show how the density of states

smoothly evolves from a low-field intensity regime into a

nD _[” ierlh _nD high-field intensity regime, making the nonlinear effects of

pPrTe) ﬁxdT e (1), €0 the THz field apparent.
where A. Generalized density of states, one dimension
. 1 d"k The density of states for a single-mode 1D system
p" (T, 7)= %) o (“guantum wire”) in the absence of external fields is
i T+ 712 . oe . . . 1/2m 1/2 »
XeXp[—%fTﬂzdSe k+%A(s) } Po (T,G)—W(ﬁz € “b(e). (66)

(61) In the presence of an external strong oscillating field, from

With the vector potential41), one obtains explicitly that (65) we obtain that the GDOS is

1 d"k , pto(T, €)=, fw dk S e— e— e+ 170 ]
an(T,T):—f —nexp{—l 7 ) =
h (27)

(ex+ €5)7lh

Lo \V32¢;€
ehk-E Q7 X 3y X Sin(QT)
+2W sin(QT)sin > hQ

€f
o . XJ|+j(m COS(ZQT))
- cog20T)sin(Q7) | (. (62
— 32,2 s
Here e,=7°k“/2m, and we have defined the fundamental = FIO(T,e— e +150Q)piPe— e +15Q),
energy scale, also recognized in Refs. 5 and 6, [
) (67)
e’E?

qzthW. (63)  where the sideband weights are
The energye; can be interpreted classically in the following 1D _2 V32¢i€ | Q
way: consider a classical particle with chaggand massn r(T.e)= J- J2j Q) SIn(QT)

subjected to an electric fielf(t)=E cost). From New-
ton’s equation of motion one finds that the mean kinetic v (i
energy of such a particle equads.?’ il 7 o820 |- (68)
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We note that, in the limik;— 0, 4
(T, €)= 80, (69)

and p'P(T,e)—paP(e), as expected. If) is in the THz
regime, then most experiments would probe the time-
averaged absorption. The time average of the sideband
weights is calculated from

[

1A
el
S
X \:\\:{"\\ N

pude) (1/m)

SN
A

o EJZJ WSII"I(S)

rTiD(e>=Zj

><J|+J-(;—;2 COS{ZS)), (70

2.
\e—‘eblee

which for| odd yields
FIG. 1. Time-averaged generalized density of states for a 1D
—ip 27 ds V32¢;€ system shown for a range of FIR intensities/#Q €[0,2]. The
ri(e)= E fo ﬂ‘]4j+2 o > s) band edge and the sidebands display a blueshift, which scales lin-
. early with the intensity. Absorption extends below the band gap

€ (dynamical Franz-Keldysh effect
XJgj+141 7o COL2S) |, (7D
hQ
2D ” 2m dé
and, forl even, p?2(T,e)=2, | dkk 2—5[6—6k— e+ Q]
I,j Jo 0 ™
reo=2 f T i) 21 .
I ~ Jo 2w 4\ RO X Jy; 70 cos @ sin(QT)
X Jo; icos(25) (72) €f
2i+1\ 70 : XJ|+J- 0 cog20T) . (76)
At the onset of sideband the sideband weight is The integrals in Eq(76) are again performed using E4),
) and writing the result in the sideband picture, we obthin
—Ib 0 if | odd
0= 32 e 150) if | even 73
2 ' p?O(T, €)= r2%(T,e— €+17Q)pZ (e~ e +17Q),
where we used the identfy/ !
(77)
2m . .
d6 J(a cos ) =2mJ3(a). (74) where the sideband weights are
V32€5€ €
This shows that processes involving an odd number of phof22(T,€)= 2, 3,2( ﬁQf sSin(QT) J|+1(ﬁ COS(ZQT))-
tons of the THz field are strongly suppressed. In Fig. 1 we ! (79)
illustrate pl2(€) for a range of values ok /% Q. In the
figures we writee,=7%. We observe all the signatures of Identical arguments as in the 1D case lead to
the dynamical Franz-Keldysh effe@DFK):’ the Stark-like _
blueshift of the main absorption edge by, the formation of 120(0) = 0 if 1 odd (79
sidebands aty+ €= N#A(), and finite absorption within the ! I3 (er IR Q) if | even,
band gap.

i.e., the same result as in the 1D case.

As in the 1D case, we have numerically investigated the
time averaged GDO$22(€) = (O /27) [2™2dT p?O(T,€).
Several authors considered fields perpendicular to then Fig. 2 we illustratep22(e) for various values ok /(.

quantum well(cf. Ref. 29 and references thergitere we  Again, as in the 1D case, we observe all the characteristics of
focus on the situation where the electric field is in the planehe DFK’ Finally, Fig. 3 shows the DTS signal.

of the two-dimensional electron gas. In such a system with
no external field, the density of states is constant,

B. Generalized density of states, two dimensions

C. Generalized density of states, three dimensions

0 m Absorption in bulk semiconductors subject to THz radia-
po (€)= —7 0(e€). (79 tion was considered a long time ago by Yacdand later by
Rebané These papers studied transition rates between bands
With a harmonically oscillating field, we obtain, from Eqg. by investigating approximate solutions to the corresponding
(65), time-dependent Schdinger equation. Reference 5 con-
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1.5+ ! T . N i
w, = 0.
O)r = (.80 «orereerennn
= o 0.8F wr = 140 ===-=-
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= e =000 —— X 0.6}
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FIG. 4. The time-averaged generalized density of states for a 3D

FIG. 2. The time-averaged GDOS for a 2D system for a range ofystem for a range of FIR intensities;/{}=(0.0,0.2,0.8,1.4,2.0).
FIR intensitiesw; /) =(0.0,0.2,0.8,1.4,2.0). At low intensities one
observes a Stark-like blueshift of the band edge, as well as finite 30 €
absorption within the band gap. With increasing intensity, side- r (Tié):; Jl+j<m COS(ZQT))

bands emerge at=ey+ €= 2%().
1 V32¢€
cluded that transitions occur in the gap, and noted reduced X Jo dn Jaj| — 5 siNQT)7|. (82
rates above the gap, in agreement with the present work,
while Re_f. 6 _poimed out that thg absorption egde wouild b%gain, we have
shifted, likewise in agreement with our work. The 3D field-

free density of states is 3000 = 0 if | odd 83
0= 2.(¢,/50) if | even, (83
1 2m 3/2
30(¢)= — 1| 0(e)eY? (80 ; ; 3D ; .
Po 272\ & ' In Fig. 4 we illustratep,,J €) for various values ok /#(};

the DTS signal for the 3D case is shown in Fig. 5.

With the external field the density of states becomes
D. Summary
The main physical consequences of the THz field on the
p30(T,e)=2, 130T, e~ e+15Q)pP(e— e +110), linear absorption spectrum for systems with parabolic disper-
! sion can be summarized as follows. The dynamical modifi-
(82) cations of the absorption spectrdmappear near the absorp-
tion edge,(ii) extend a fewe.,=#A{) around the edge, and
with the sideband weights (iii) are most pronounced whewy /Q is of order unity.
If Qisin the THz regime, and fields like those attainable
with free-electron lasers are consideféd then w;/Q~1

T T .
wp = 0.20 e
n
= we = 0.80 e
= A |
g we = 1,40 ==aa
5 N
‘ = - QQE\\\
N | ) - 2 MM
. E RN
fal .| : N
: ’ N
\N, _ 0x NN
. =
Z ', NInnnmk
g MRy
i T T rh it
Y
w 2 IR TR
R =
wn : -
= |
1723
a :
fon]
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2
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FIG. 3. The DTS signal for a 2D system for a range of intensi-
ties, w¢/02=(0.2,0.8,1.4,2.0). FIG. 5. DTS spectrum for a 3D system.
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and the fine structure extends over an area of several meV. *
. an e Jon(y)cog42nQT]
Consequently, an experimental verification of these effects C(z)=22 sinnz], (88
should be possible. n=1 n
o Jon_1(y)sin(2n—1)QT
VI. SUPERLATTICES Szy=23 2 1(7) nr_{(l/z ) ]sir{(n—1/2)z].
According to the semiclassical Bloch-Boltzmann theory =t (89)

of transport, a uniform electric field causes charge carriers in

a periodic potential to execute a time-periodic motion with\ye have suppressed the explicit dependend® Bfand y in

frequency wg=eakl/#, wherea is the lattice periodicity. ((z) andS(z) for simplicity. Note that both of these func-
Conditions for observing these Bloch oscillations are muchjons are antisymmetric inz, i.e., ¢(—z)=—C(z) and

more favorable in superlattices than in ordinary bulk materi-‘gg_z): —S(2). The identity®
als, and recent years have witnessed an intense research e

fort culminating in the observation of Bloch oscillatiotfdn 27 do
ac fields a phenomenon called dynamical localization may J 2—exp{ia cos 6+ib sin 8} =Jg( JaZ+b?) (90)
occur: if the parametey=aekF, /%) equals a zero aly, the m
average velocity vanishés.In this section we investigate | . .
how dynamical localizatidh*®~**manifests itself in the free- 'S the Key to the next step in the evaluation of E#p), and
particle absorption spectra. Recently, Medéml S presented ~ @lOWS US to write

results of a detailed numerical solution of the semiconductor m

Bloch equations, including excitonic effects, and found that sl _ ” ~ie, 7lh

at dynamical localization the relative motion exciton wave P(T)= 5 25, J; de e =7K(Qn (D
function changes from a 3D charactge., localized ink,

space to a 2D structurgextended ink, spacg, and below where we have defined the kernel

we shall illustrate how the same phenomenon reflects itself
in the present analytic study of free-particle properties.

A
K(Z):Jo(% D+ I(MZP+S2)|. (92

A. Generalized density of states o
Also here, we have suppressed the explicit dependence of

The starting point for our analysis is the effective disper—QT and . In a distribution sense we can write

sion (54) introduced in Sec. IV B, which we reproduce here
for the convenience of the reader:

dee L (93)

1 72K o 7107

et K]= E)\eff cogak) + WJF €g- (84) o e . .
eff where 0 indicates a positive infinitesimal. This expression

Henceforth we puty=0, and drop the “eff” subscript. We allows us to compute the Fourier transform of &2f),

consider the effect of the THz field described by the vector

= = - m © gj 1h
potential A(t) = — E sin(Qt)/Q), where E=(0,0E,). In ac- p(T,e)= 5757 f drM KQ7)+|.
cordance with Sec. IV, we calculate the generalized density mhta N J e T
of states from (94

In what follows we shall examine several properties of this
SI(T ’T): m fwdf wa/adk e—iq_q-/ﬁ result.
p-l, 27243 Jo 0t o I
xexd =il (T,7)], (85) B. Field-free limit

In the limit of vanishing field strength we have

A T+7/2
|(T,T)=ﬁf ds cogak,+y sin(Qs)]. (86 \Z
T— 12 lim K(z)=J (—) (95
" %240
We evaluate the integral within the exponential using iden-
tity (64), with the result Using the identit§®
(Tyr)= k)| CQ7) + 3ol y) o = dx - LA>1]
(1.1 =270 | codak)| AR +Jo(v) 57 f — Sin(Bx)Jo(x) = | 2arcsing [2<1]
- - [B<—1],
- sin(ak)SmT)] , 87 (96)

we obtain the density of states for a tight-binding superlat-
where tice,
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1

l [6>)\/2] 1'0 T T T T
pSe)= —==1{ — arcsin2e/\)+1/2 [|e]<\/2] N
mh"a . [e<—M/2], LK1 A A ]
o7 g 0.6 ]
which is familiar. Z
< 0.4 .
C. Static limit =
Q.
In the limit Q—0 one obtains 0.2 ]
_ o (0] A— ——
(leo /C(QT)ZJO mSIn(wBT) . (98) -3 -2 -1 0 1 2 7

(E_Eg)/ee
Recalling the identitied

FIG. 6. The time averaged GDOS for a superlattice with effec-
Jo(z sina)= 2 JJ-Z(Z/Z)COS{Zka) (99) tive ba_ndwidthx:3.4hQ. The pro_ximity of dynamicgl localization
] occurring aty=2.4048. .. reflects itself in the stepwise structure of

the dashed curve.
and

w i.e., it is a superposition of step functions. The weigk{s
f dx cog ax)sin(BX)/x=n[0(a+ B)—0(a—pB)], however, must be evaluated numerically, and examples are
o (100 given in Sec. VIE. It is important to note that the “step

length” in the ac case is determined by the frequency of the

we obtain the density of states THz field, in contrast to the static case, where it is deter-
mined by the field strength. The field strength enters the

9 density of states only through the weight factérs.

; J; Result(102) suggests that it should be possible to probe

dynamic localization by photoabsorption: when the appropri-
This result coincides with the one obtained in Refs. 37 andite conditions are approached, the absorption coefficient
38, which studied both theoretically and experimentally theshould change qualitatively from a generic smooth behavior
effects of strong static fields on the absorption in superlatticéo a sharply defined steplike structure. The number of dis-
structures. They concluded that the steplike behavior ofinct steps appearing in the spectrum is determined by the

(103 is due to localization in the growth directigiannier-  ratio /%€, which is also a measure of the number of wells
Stark localization the localized states span. This is fully consistent with the
results of Ref. 15, whose authors considered a miniband of
D. Dynamic localization width A=21 meV and a FIR frequencyi{)=20 meV,

which essentially allows just one step, and hence a maximum

As seen ir) Sep. IVC, the ;igqature of .Iocalizatic?n in thebinding energy of the corresponding exciton which would be
growth direction in a superlattice is a steplike behavior of the

density of states. This is intuitively clear since the density of
states for a 2D systeffEq. (75)] is constant. We therefore
expect the density of states to be composed of a step function
for each well the states extend into, with weight relative to
the occupation in that particular well. We shall now show

m
whla

sl —
p (6) 4ﬁa)B

0(e+2jfiwg). (101

—
fl

<
(==

that if Jo(y) =0, i.e., the conditions for dynamical localiza- - Wi \
tion are met, then GDOS indeed is of this kind. The argu- 06 M\\W N
ment runs as follows. [9,(y)=0 then kernek92) is peri- = 0
odic in z with period 2. Furthermore, the kernel is an even 50'4

function: £(z) =K(—2z). We can therefore formally write : 0.2 /ﬁ'/"

N
¥

U
¢

N

SN
R

£

K(Qr)=2 K; cogkQr),
J

which is of the same functional form as in the static limit
[Eq. (99)]. Consequently, we may conclude that the general-

ized density of states must be of the form FIG. 7. The time-averaged GDOS for a superlattice with

N=3.41Q as a function of FIR intensity. At lowy, sidebands are

m . .
leyn. od €)= . 2 ICJ- 0(e+jhQ), (102 obse_rved, wr_uch. merge ag=2.408 ..., corresponding to dy-
whea 4 namical localization.
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mostly confined to a single well. Interestingly, E§02) sug-
gests an interpretation of the feature at 1534 meV, which
Meier et al. found “unexpected:” in our picture it is the
photon replica of the main exciton peak; since this occurs at
=1552 meV and the photon energy is 20 meV, the agree-
ment is very good indeed.

E. Numerical results

We again focus our numerical study to the time-averaged
generalized density of states

DTS(e) (arb. units)

pohd €)= (Q/27) [37dTpsx (T, €). : e

In Figs. 6 and 7 we show the absorption spectra for a super- (e—e,)/c.
lattice with an effective bandwidth=3.44Q). The numeri-
cal results confirm the expectations of Sec. VID: when FIG. 8. The differential transmission signal for a superlattice

y=aek, /A () approaches the first zero 8§, which occurs  sirycture with an effective minibandwidth=8%€. Outside the

at the argument value of 2.484. ., thegradually evolving  zero-field miniband, a steplike behavior is seen, while inside the
replicas of the zero-field density of states converge into plaminiband DTS for dynamical localization develops a jagged shape
teaus of finite width. The exactness of the plateaus can bg contrast to the smooth behavior for the extended state.

judged from Fig. 7: aty=2.408 ..., theline joining the

the steps appears near vertical. Finally, in Fig. 8 we show theubsequent paper. Two central concepts emerge from our
DTS spectra at dynamical localizatiaibL) and non-DL  analysis: a generalization of the density of states into time-
conditions. There are two characteristic differend®sOut-  dependent conditiongthe GDOS defined in Eq56)], and
side the zero-field miniband, DL leads to a steplike structurghotonic sidebandé.e., photon replicas which form a con-

in contrast to the smooth behavior found otherwise; @Nd  venient framework for discussing the various features of the
inside the miniband the DL spectrum distinguishes itself byabsorption spectra.

its sharp jagged structure.
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