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Linear optical absorption spectra of mesoscopic structures in intense THz fields:
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We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor
structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and
applied to the calculation of linear optical absorption spectrum for several nonequilibrium mesoscopic struc-
tures. We show that a blueshift occurs and sidebands appear in bulklike structures, i.e., the dynamical Franz-
Keldysh effect@A.-P. Jauho and K. Johnsen, Phys. Rev. Lett.76, 4576~1996!#. An analytic calculation leads
to the prediction that in the case of superlattices distinct stable steps appear in the absorption spectrum when
conditions for dynamical localization are met.@S0163-1829~98!03412-2#

I. INTRODUCTION

Light absorption can be described in terms of a process
where polarization is induced into the medium. To linear
order in the electric-field component of the traversing light,
E, the induced polarizabilityP can be expressed in terms of
the dielectric susceptibilityx as

P~ t !5E
2`

t

dt8x~ t,t8!E~ t8!.

If the absorbing medium is in a stationary state, the suscep-
tibility depends only on the difference of its time arguments,
i.e., x(t,t8)5x(t2t8). Under these conditions Maxwell’s
equation forE is an algebraic equation in frequency space,
and one finds that the absorption is proportional to the imagi-
nary part of x~v!. However, under nonequilibrium condi-
tions, which are the topic of the present study, the suscepti-
bility is a two-time function, and Maxwell’s equation
remains an integral equation even in the frequency domain.
Further progress hinges upon two steps: first, one has to de-
velop methods to calculate the nonequilibrium susceptibility
function, and, second, one has to specify what sort of light-
wave or pulse is used in the absorption experiment. The
present work addresses both of these problems. As far as the
time dependence of the probe pulse is concerned, two spe-
cific situations are examined. First, consider an undoped
semiconductor placed in an intense THz field; we assume
that the THz field is not able to induce polarization, i.e., no
carriers are excited in the conduction band. Such a system is
in a nonequilibrium state, i.e., the susceptibility is a two-time
function. Properties of such systems were investigated ex-
perimentally using the free-electron laser~FEL! as a source
for intense THz fields;1 many interesting properties were dis-
covered, and others predicted, such as photon-assisted
tunneling,2 dynamical localization and absolute negative
conductivity,3 the ac Stark effect,4 the dynamical Franz-
Keldysh effect, and the formation of sidebands.5–9 A second

example consists of ultrafast transients. Consider an undoped
semiconductor structure subject to an external intense static
field. At some time instant a population of carriers is pumped
into the conduction band. These mobile charges will rear-
range themselves so as to screen the external field. While the
screening is building up, the susceptibility of the system is a
two-time function. Using femtosecond laser techniques,
which are able to probe the time scales in which screening is
building up, experiments investigating the nonequilibrium
properties of such systems have been performed.10,11

Band-gap engineering techniques of semiconductor com-
pounds, such as molecular-beam epitaxy, allow spatial
modulation of the band gap down to atomic resolution. It is
possible to break the translational symmetries of bulk crys-
tals, induce new ones, and reduce the degrees of freedom
with these techniques. Construction of systems which are
effectively two dimensional~2D! and even one dimensional
~1D! with regard to electron mobility and optical properties
is today a standard procedure. Another example of such
manmade structures are superlattices~SL’s!, i.e., an engi-
neered periodic potential in the growth direction of the
sample. The interplay between the mesoscopic properties
and the dynamical properties can lead to many interesting
phenomena such as absolute negative resistance for the trans-
port properties,12 and the rich features in the optical proper-
ties which are the subject of the present work.

The purpose of this paper is to present a theoretical study
of light absorption in mesoscopic systems subject to intense
THz @far-infrared ~FIR!# fields. We consider undoped sys-
tems, which implies that there are no carriers in the conduc-
tion band. Thus near-infrared~NIR! interband absorption is
the dominant absorption process. The nonequilibrium nature
of the system necessitates the use of special theoretical tools;
we have chosen to apply nonequilibrium Green-function
techniques.13,14 In particular, this method allows us to treat
the intense FIR field nonperturbatively, and defines a frame-
work in which screening can be treated systematically. Our
analysis consists of the following steps. Starting from a two-
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band Hamiltonian, we derive a formal expression for the
interband susceptibility in terms of nonequilibrium Green
functions. Next, we use the general expression to derive the
NIR absorption spectrum for noninteracting particles~Cou-
lomb interactions will be discussed in a subsequent paper;
see also below!. Finally, we give explicit results for a num-
ber of special cases~3D, 2D, and 1D systems and superlat-
tices! and discuss the physical implications. The relation of
our work to previous papers addressing similar topics can be
summarized as follows. Bulk systems were studied previ-
ously in Refs. 5 and 6, where the relevant energy scales were
recognized, and the blueshift of the band edge~see below!
was predicted. The photonic subband structure, which is an
essential feature of the present work, was not resolved, how-
ever. Concerning absorption in superlattices, in a recent
work15 a detailed numerical study, using Monte Carlo meth-
ods, was presented. In the present work we are, by analytic
means, able to explain the ‘‘surprising’’ emergence of satel-
lite peaks in the spectrum which escaped explanation on ba-
sis of the numerical work.

This paper is organized as follows. In Sec. II we derive a
general expression for the two-time dielectric interband sus-
ceptibility. Section III relates the susceptibility to the mea-
sured absorption, considering both continuous-wave mea-
surements as well as short white light pulses. The single-
particle Green functions and the corresponding spectral
functions, which determine the susceptibility, are defined in
Sec. IV, and related to the generalized density of states7

~GDOS!, which, in turn, is shown to determine the optical
absorption. Section V considers bulklike systems, and we
obtain analytic results for the GDOS, which is analyzed in
some detail in terms of the sideband picture. The properties
of light absorption in superlattices are treated in Sec. VI.
Specific attention is paid to conditions where dynamical lo-
calization occurs, and we show how it affects the absorption
spectrum. Finally, in Sec. VII we make some concluding
remarks.

II. DIELECTRIC INTERBAND SUSCEPTIBILITY

We shall now derive an expression for the dielectric in-
terband susceptibility using nonequilibrium Green functions.
The microscopic operator describing interband polarization
is

PW ~ t !5(
k

dW k@ak
†~ t !bk~ t !1bk

†~ t !ak~ t !#. ~1!

Here dW k is the dipole matrix element,ak
†(t) @ak(t)# are the

conduction-band electron creation~annihilation! operators,
and bk

†(t) @bk(t)# are the valence-band creation~annihila-
tion! operators. The linearized Hamiltonian associated with a
polarization PW (t) induced by the external fieldE(t) is
HP(t)52PW (t)•E(t). Linear-response theory now yields the
Cartesianl component of the induced interband polarization
due to a weak external fieldE:

Pl~ t !52
i

\ E
2`

`

dt8u~ t2t8!^@PW ~ t8!,Pl~ t !#&•E~ t8!. ~2!

The retarded susceptibility tensor can be identified from Eq.
~2!,

x lm
r ~ t,t8!52

i

\
u~ t2t8!^@Pm~ t8!,Pl~ t !#&. ~3!

Following the standard line of attack in nonequilibrium
theory,13 we first consider the causal~time-ordered! response
function

x lm
c ~ t,t8!52

i

\
^T$Pm~ t8!Pl~ t !%&, ~4!

whereT is the time-ordering operator. In nonequilibrium, the
causal response function is replaced by its contour ordered
counterpartx lm

c (t,t8)→x lm
c (t,t8), where the complex-time

variablest andt8 reside on the Keldysh contour. Finally we
obtain the retarded tensor by an analytic continuation using
the Langreth rules.16

We use Eq.~1! to write the susceptibility as

x lm
c ~t,t8!52

i

\ (
qk

dl~k!dm~q!@^Tc$aq
†~t8!bq~t8!

3ak
†~t!bk~t!%&

1^Tc$aq
†~t8!bq~t8!bk

†~t!ak~t!%&

1^Tc$bq
†~t8!aq~t8!ak

†~t!bk~t!%&

1^Tc$bq
†~t8!aq~t8!bk

†~t!ak~t!%&#, ~5!

where Tc is the contour-ordering operator. In equilibrium,
the two-particle correlation functions occurring in Eq.~5!
would be found via the Bethe-Salpeter equation.17 In what
follows, however, we shall consider the noninteracting limit
of Eq. ~5!. This approach is motivated by the following con-
siderations. The noninteracting limit will allow significant
analytic progress, and the results, which we believe are in-
teresting in their own right, form the basis for an interacting
theory, to be reported elsewhere~see also below!. Second,
the experimental findings of absorption in quantum wells,
subject to intense FIR,18 can be largely understood on the
basis of the concepts presented here. A quantitative assess-
ment requires a nonequilibrium theory for the two-particle
Green functions, i.e., a numerical solution of the nonequilib-
rium Bethe-Salpeter equation. We have recently completed
this program, and give our results in a subsequent paper. For
noninteracting particles we can use Wick’s theorem to fac-
torize the two-particle correlation functions. Thus the non-
equilibrium susceptibility can be expressed in terms of
single-particle Green functions. The following Green func-
tions are needed:

gc~k,t;q,t8!52 i ^Tc$ak~t!aq
†~t8!%&, ~6!

gv~k,t;q,t8!52 i ^Tc$bk~t!bq
†~t8!%&, ~7!

gab~k,t;q,t8!52 i ^Tc$ak~t!bq
†~t8!%&, ~8!

and

gba~k,t;q,t8!52 i ^Tc$bk~t!aq
†~t8!%&. ~9!
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We assume that the frequencyV of the FIR field is such that
\V!eg . In typical experiments on III-V systemseg is of
the order of an eV, while\V is a few meV, so this condition
is satisfied. Consequently, interband transitions due to the
perturbing field can be ignored, and the Green functions re-
lated to the Zener effect, i.e.,gab(k,t;q,t8) and
gba(k,t;q,t8), are neglected from this on. The first-order
nonequilibrium susceptibility thus reads

x lm
c ~t,t8!52

i

\ (
qk

dl~k!dm~q!@gc~k,t;q,t8!gv~q,t8;k,t!

1gv~k,t;q,t8!gc~q,t8;k,t!#. ~10!

The analytic continuation to real times is performed with the
Langreth rules,16 which state that if on contour

C~t,t8!5A~t,t8!B~t8,t!, ~11!

then the retarded function on the real-time axis is

Cr~ t,t8!5A,~ t,t8!Ba~ t8,t !1Ar~ t,t8!B,~ t8,t !. ~12!

We thus have

x lm
r ~ t,t8!52

i

\ (
k

dl~k!dm~k!@gc
,~k,t,t8!gv

a~k,t8,t !

1gc
r ~k,t,t8!gv

,~k,t8,t !1gv
,~k,t,t8!gc

a~k,t8,t !

1gv
r ~k,t,t8!gc

,~k,t8,t !#, ~13!

with

g,~ t,t8!5 i ^c†~ t8!c~ t !&, ~14!

ga~ t,t8!5 iu~ t82t !^$c~ t !,c†~ t8!%&, ~15!

gr~ t,t8!52 iu~ t2t8!^$c~ t !,c†~ t8!%&. ~16!

We recall the following relations:

@g,~ t,t8!#* 52g,~ t8,t !,

@ga~ t,t8!#* 5gr~ t8,t !, ~17!

@gr~ t,t8!#* 5ga~ t8,t !.

For certain applications, e.g., Sec. III A, it is convenient to
introduce the center of mass variablesT5(t81t)/2 and
t5t2t8.19 In terms of these variables the symmetry rela-
tions of the Green functions are

@g,~T,t!#* 52g,~T,2t!,

@ga~T,t!#* 5gr~T,2t!, ~18!

@gr~T,t!#* 5ga~T,2t!.

The retarded susceptibility expressed in center-of-mass coor-
dinates is

x lm
r ~T,t!52

i

\ (
k

dl~k!dm~k!$@gc
,~k,T,t!gv

a~k,T,2t!

1gv
,~k,T,t!gc

a~k,T,2t!#2H.c.%. ~19!

Note that in equilibriumx lm
r (T,t)5x lm

r (t). As shown in
Sec. III A, the relevant quantity for continuous-wave mea-
surements at frequencyv l is

Imx lm
r ~T,v l !5ImH E

2`

`

dt eiv ltx lm
r ~T,t!J ~20!

to first order inV/v l ~hereV is the FIR frequency!. Now
x lm

r (T,t) is a real quantity, as is evident from Eq.~19!. Us-
ing the properties of the Fourier transform, we obtain

x lm
r ~T,v l !52

i

\ (
k

dl~k!dm~k!E
2`

` dv

2p
$gc

,~k,T,v!

3@gv
a~k,T,v2v l !1gv

r ~k,T,v1v l !#

1gv
,~k,T,v!@gc

a~k,T,v2v l !

1gc
r ~k,T,v1v l !#%. ~21!

Since x lm
r (T,t) is real, the imaginary part of its Fourier

transform is obtained through

Imx lm
r ~T,v l !5

1

2i
@x lm

r ~T,v l !2x lm
r ~T,2v l !#. ~22!

We can therefore write, in terms of the spectral functions

Ac~k,T,v!5 i @gc
r ~k,T,v!2gc

a~k,T,v!# ~23!

and

Av~k,T,v!5 i @gv
r ~k,T,v!2gv

a~k,T,v!#, ~24!

that

Imx lm
r ~T,v l !5

i

2\ (
k

dl~k!dm~k!E
2`

` dv

2p
$gc

,~k,T,v!

3@Av~k,T,v2v l !2Av~k,T,v1v l !#

1gv
,~k,T,v!@Ac~k,T,v2v l !

2Ac~k,T,v1v l !#%. ~25!

The lesser functions can be expressed in the form13

ga
,~k,T,v!5 i f a~k,T,v!Aa~k,T,v!, ~26!

where f a(k,T,v) is a generalized particle distribution for
particles of speciesa, andAa(k,T,v) is the corresponding
spectral function. In accordance with our assumption about
no FIR field-induced interband transitions, we can set
f c(k,T,v)50 ~zero occupation of conduction band!, and
that f v(k,T,v)51 ~all valence states are occupied!. In the
general case, e.g., when considering nonlinear effects in the
probing light field, one would have to findf a(k,T,v) via,
say, a Monte Carlo solution of semiconductor Bloch
equations20,21 or by a direct integration of quantum kinetic
equations forga

,(k,T,v).13 With these assumptions the sus-
ceptibility reduces to
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Im x lm
r ~T,v l !5

21

2\ (
k

dl~k!dm~k!E
2`

` dv

2p
Av~k,T,v!

3$Ac~k,T,v2v l !2Ac~k,T,v1v l !%

5
1

2\ (
k

dl~k!dm~k!E
2`

` dv

2p
Av~k,T,v!

3Ac~k,T,v1v l !. ~27!

The second equality comes about because we do not consider
overlapping bands. Equation~27!, which is the central result

of this section, expresses the fact that the nonequilibrium
interband susceptibility function can be calculated from a
joint spectral function, which is a convolution of the indi-
vidual band spectral function. A similar result is known from
high-field quantum transport theory:22 there the field-
dependent scattering rate is expressed as a joint spectral
function for the initial and final states.

In order to make a connection to the equilibrium case, we
recall the exact identitygeq

,(k,v)5 iaeq(k,v)n(v) ~n(v) is
the Fermi function!, and from Eq.~25! ~Refs. 17 and 23! we
obtain

Im x lm
r ~v l !52

1

2\ (
k

dl~k!dm~k!E
2`

` dv

2p
$nc~v!ac,eq~k,v!@av,eq~k,v2v l !2av,eq~k,v1v l !#1nv~v!av,eq~k,v!

3@ac,eq~k,v2v l !2ac,eq~k,v1v l !#%. ~28!

Herenc(v) is the conduction-band electron occupation func-
tion, and nv(v) is the corresponding function for the
valence-band electrons.

III. ABSORPTION COEFFICIENT IN TERMS
OF THE TIME-DEPENDENT DIELECTRIC

SUSCEPTIBILITY

The dielectric susceptibilityx links the induced polariza-
tion P to the fieldE via

P~ t !5E
2`

t

dt8x~ t,t8!E~ t8!. ~29!

The wave equation for light is then

¹2E~ t !2
1

c2

]2D~ t !

]t2 50, ~30!

where D(t)5E(t)14pP(t). The absorption coefficient
a~v! is defined as the inverse of the length which light has to
traverse in the medium at frequencyv in order for the inten-
sity of the light to decrease by a factor of 1/e. In equilibrium,
D(v)5@114px(v)#E(v)5e(v)E(v), and the absorption
coefficient19 becomes

a~v!54pv
Im x~v!

cn~v!
. ~31!

Heren2(v)5 1
2 @Ree(v)1ue(v)u# is the refraction coefficient

which usually depends only weakly onv. In nonequilibrium
this analysis must be generalized, and we consider two spe-
cial cases:~i! monochromatic continuous wave measure-
ments, and~ii ! white light short-pulse measurements.

A. Continuous-wave measurements

Consider a system out of equilibrium which is probed by
a light field ~which is assumed to be weak! of frequencyv l :

E~r ,t !5E0 exp@ i ~rk2v l t !#. ~32!

The polarization can then be expressed as

P~ t !5E~r ,t !E
2`

`

dt8eiv l ~ t2t8!x r~ t,t8!. ~33!

This form is suggestive: it is advantageous to expressx r

in terms of the center-of-mass and difference coordi-

nates,x r(t,t8)→ x̃ r@ 1
2 (t1t8),t2t8#. The characteristic time

scale for the center-of-mass time is set by the ‘‘slow’’ fre-
quencyV, while the difference time varies on the scale of the
‘‘fast’’ frequency v l . We thus gradient expand

x̃ r@ 1
2 (t1t8),t2t8#. x̃ r(t,t2t8)1 1

2 (t82t) x̃ r 8(t,t2t8)1¯,
where the prime indicates differentiation with respect to the
slow temporal variable. Substitution in Eq.~33! then yields
~we introduce a variablet[t2t8)

P~ t !5E~r ,t !E dt eiv lt@ x̃ r~ t,t!1~2 1
2 t!x̃ r 8~ t,t!1¯#

5E~r ,t !F x̃ r~ t,v l !1
]

]v l

]

]t

i

2
x̃ r~ t,v l !1¯ G

5E~r ,t !expF i

2

]2

]t]v l
G x̃ r~ t,v l !. ~34!

Equation ~34! can now be used in the Maxwell equation;
note, however, that upon Fourier transforming the dominant
frequency comes fromE(t), and we can keept in x(t,v l)
fixed. The slow time variation will from this on be indicated
by T. Proceeding as in deriving the static result~31!, we
identify the time dependentabsorption coefficient

aT~v!54pv
Im x̃ r~T,v!

cnT~v!
1O~V/v!. ~35!

If the driving force is periodic inT ~the harmonic time de-
pendence due to a FEL laser is an important special case!,
then the average absorption coefficient is
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ā~v!5
1

Tperiod
E

period
dT aT~v!

5
1

Tperiod
E

period
dT 4pv

Im x̃ r~T,v!

cnT~v!
~36!

to all orders inV/v. We stress that herex̃ r(T,v) is Fourier
transformed with respect to the difference variablet. Below
we shall represent numerical examples for the generalized
absorption coefficient.

B. Short white light pulse measurements

Consider now an instantaneous measurement performed
on a nonequilibrium system: at some specific timet5tm the
system is probed with a weak pulse whose duration is short
compared to the characteristic dynamics of the system. We
approximate the pulse withd function in time:

E~r ,t !5E0eirkd~ t2tm!. ~37!

In principle, construction of such a pulse would take infinite
energy due to its time dependence. The pulse is therefore
hardly ‘‘weak.’’ When we refer to the pulse as weak we
assume thatE0!1; that is, the intensity of the light is small
at all frequencies. Using Eq.~37! in the Maxwell equation
yields the dispersion relation

k25
v2

c2 @114px r~v,tm!#. ~38!

This dispersion relation looks quite similar to the one ob-
tained in Sec. II. The difference is that herex r(v,tm) is
Fourier transformed with respect tot8, not the difference
variablet. In the present case we obtain the time-dependent
absorption coefficient

a t~v!54pv
Im x r~v l ,t !

cnt~v!
. ~39!

For examples of experiments which probe systems in this
manner, see, e.g., Refs. 10 and 11.

C. Differential transmission spectrum

Consider a sample of thicknessL; then the ratio of the
intensity transmitted through the sample with its initial inten-
sity is T(v)5exp@2ā(v)L#, where ā(v) is the absorption
coefficient of the sample. Experimental setups for measuring
the change in absorption due to externally controlled pertur-
bations commonly measure the differential transmission
spectrum~DTS! defined by20

D~v!5
T~v!2T0~v!

T0~v!
. ~40!

HereT(v) is the transmission with the perturbation present
and T0(v) is the transmission through the unperturbed
sample. Below, we give examples ofD~v! in nonequilibrium
situations.

IV. SINGLE-PARTICLE GREEN FUNCTIONS
AND SPECTRAL FUNCTIONS

In this section we determine the single-particle Green
functions and their associated spectral functions. We show
that, under conditions specified below, that the convolutions
of the spectral functions, encountered in Sec. II, result in
effective single-band spectral functions.

A. Single-particle Green functions

Let AW be the vector potential which defines the FIR field.
Considering harmonic, translationally invariant external
fields, we choose

AW ~ t !52EW
sin~Vt !

V
, ~41!

which represents the physical uniform electric field
EW cos(Vt). The two-band single-particle Hamiltonian for a
system subject to the external FIR field can generally be
written in the form

H5(
kW

H ecFkW1
e

\
AW GakW

†
akW1evFkW1

e

\
AW GbkW

†
bkWJ

1(
kW ,kW8

$FkW ,kW8@AW ~ t !#akW
†
bkW81H.c.%. ~42!

Here FkW ,kW8@AW (t)# describes the mixing of the bands due to
Zener-like processes caused by the intense FIR field. We
shall now argue that for realistic parameter values the mixing
term can, in fact, be neglected. Leteg be the band gap
~eg.1.4 for bulk GaAs!. In order for the THz field to mix
the bands, i.e., to yield a finiteFkW ,kW8@AW (t)#, 2n-photon pro-
cesses have to occur withn5@eg/2\V#. ~Here@x# indicates
the integer part ofx.! Note that only even-order photon pro-
cesses are allowed due to parity. In Ref. 7, we showed that
the 2n-photon process carries spectral weight
2pJn

2(e f /2\V), wheree f5e2E2/4mV2 is the average clas-
sical kinetic energy obtained by an electron placed in the FIR
field. Thus band mixing can be expected to be negligible
if J[ eg /\V]

2 (e f /2\V)!1. Considering typical frequencies

(\V.2, . . . ,20meV) and strongest THz fields that are at-
tainable in FEL facilities,E.1 MV/m, one finds that the
argument of the Bessel function is of the order of unity.
However, with these parametersn is of the order of a few
hundred, and sinceJm(x)!1 for x!m,28 we are indeed in a
regime where band mixing is of no consequence and will
henceforth be neglected.

The Dyson equation for the retarded and/or advanced
free-particle Green function is

S i\
]

]t
2eaFkW1

e

\
AW ~ t !G Dga

r /a~kW ,t,t8!5d~ t2t8!, ~43!

whereaP$c,v% is the band index. This equation is readily
integrated with the solutions
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ga
r /a~kW ,t,t8!57

i

\
u~6t7t8!

3expH 2
i

\ E
t8

t

ds eaFkW1
e

\
AW ~s!G J ,

~44!

and the spectral functionA5 i (gr2ga) becomes

Aa~kW ,t,t8!5
1

\
expH 2

i

\ E
t8

t

ds eaFkW1
e

\
AW ~s!G J .

~45!

B. Convolution of the spectral functions

According to Sec. II, the susceptibility is obtained through
the trace of a convolution of the spectral functions. We shall
now show that within the present model the convolution of
spectral functions results in an effective single-band spectral
function.

In terms of the center of mass variables,t5t2t8 and
T5(t1t8)/2, we write the spectral functions as

Aa~kW ,T,v!5
1

\ E
2`

`

dt eivt

3expH 2
i

\ E
T2t/2

T1t/2

ds eaFkW1
e

\
AW ~s!G J .

~46!

Then the convolution

b~kW ,T,v l !5\E
2`

` dv

2p
Ae~kW ,T,v!Av~kW ,T,v2v l !

~47!

of the two spectral functions becomes

b~kW ,T,v l !5
1

\ E
2`

`

dt eiv lt expH 2
i

\ E
T2t/2

T1t/2

ds

3S ecFkW1
e

\
AW ~s!G2evFkW1

e

\
AW ~s!G D J .

~48!

In the case of parabolic bands we have

ec@kW #5
\2k2

2me
, ev@kW #52

\2k2

2mh
2eg . ~49!

Hereme is the electron mass,mh is the positive hole mass,
andeg is the band gap. We define a single effective band for
the system,

eeff@kW #[ec@kW #2ev@kW #5
\2k2

2meff
1eg , ~50!

where meff5memh /(me1mh) is the effective reduced mass.
Thus the effective band is parabolic like the original bands,
but with their reduced mass. It is therefore evident that the
convolution, writing Aeff(kW,T,vl)5b(kW,T,vl), is a spectral
function for a parabolic band,

Aeff~kW ,T,v!5
1

\ E
2`

`

dt eivt

3expH 2
i

\ E
T2t/2

T1t/2

ds eeffFkW1
e

\
AW ~s!G J .

~51!

In the case of tight-binding minibands for a type-I superlat-
tice ~with perioda!, we write the bands as

ec@kW #5
1

2
lc cos~aki!1

\2k'
2

2me
, ~52!

ev@kW #52
1

2
lv cos~aki!2

\2k'
2

2mh
2eg , ~53!

where lc is the electron miniband width,lh is the corre-
sponding bandwidth for the holes,ki is the~crystal! momen-
tum component parallel to the growth direction of the super-
lattice, and k' is the magnitude of the component
perpendicular to the growth direction. The effective band
thus becomes

eeff@kW #5
1

2
leff cos~aki!1

\2k'
2

2meff
1eg , ~54!

whereleff5lc1lv is the effective bandwidth, which again is
of the same form as the original bands. This shows that also
for superlattices the convolution~47! leads to an effective
spectral function of the original form.

In terms of the effective spectral function the imaginary
part of the susceptibility can be written as

Im x lm
r ~T,v l !5

dldm

2\ (
kW

Aeff~kW ,T,v l !, ~55!

where we assume that the dipole matrix elements arek inde-
pendent. In equilibrium the trace of the spectral function
yields the density of states for the system. Analogously, the
GDOS ~Ref. 7! is defined as

r~T,v l !5
1

p (
kW

Aeff~kW ,T,v l !, ~56!

allowing us to write the absorption coefficient as

aT~v l !'
2p2v l udu2

cn\
r~T,v l !. ~57!

For the remainder of this work we shall investigate the prop-
erties ofr(T,v l) for various systems. The concept of a time-
dependent density of states was discussed earlier in a specific
context in Ref. 24. Here we have made the definition rigor-
ous.

C. Gauge invariance

To conclude this section, we briefly comment on the
gauge invariance. From the outset, we might have chosen to
work within the gauge-invariant formulation which has been
developed in the field of high-field transport.25,26,13Consid-
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ering translationally invariant systems, correlation functions
are made gauge invariant with the transformation

kW→kW1
e

t2t8
E

t8

t ds

\
AW ~s!. ~58!

However, the absorption coefficient follows from a trace op-
eration~56!, which makes the transformation~58! redundant:
a simple change of variables when performing the trace un-
does Eq.~58!, and proves that our formulation of the absorp-
tion is gauge invariant.

V. PARABOLIC BANDS

In this section we shall investigate the properties of the
generalized density of states for systems which can be effec-
tively described by Hamiltonians yielding parabolic bands,
be it in one, two, or three dimensions. We write the effective
single-band dispersion as

e@kW #5
\2k2

2meff
1eg . ~59!

For convenience we writem5meff , and seteg50 which
shifts the energy axis such that the reference point is the
band-gap energy. We calculate the generalized density of
states from

rnD~T,e!5E
2`

`

dt ei et/\rnD~T,t!, ~60!

where

rnD~T,t!5
1

\ E dnkW

~2p!n

3expH 2
i

\ E
T2t/2

T1t/2

ds eFkW1
e

\
AW ~s!G J .

~61!

With the vector potential~41!, one obtains explicitly that

rnD~T,t!5
1

\ E dnkW

~2p!n expH 2 i F ~ek1e f !t/\

12
e\kW•EW

mV2 sin~VT!sinS Vt

2 D
2

v f

V
cos~2VT!sin~Vt!G J . ~62!

Here ek5\2k2/2m, and we have defined the fundamental
energy scale, also recognized in Refs. 5 and 6,

e f5\v f5
e2E2

4mV2 . ~63!

The energye f can be interpreted classically in the following
way: consider a classical particle with chargee and massm
subjected to an electric fieldEW (t)5EW cos(Vt). From New-
ton’s equation of motion one finds that the mean kinetic
energy of such a particle equalse f .27

In order to perform the Fourier transform~60! we utilize
the identity28

exp~ ix sin u!5(
n

Jn~x!exp~ inu!, ~64!

whereJn(x) are Bessel functions; we shall henceforth write
(n[(n52`

` to simplify the notation. The generalized den-
sity of states becomes

rnD~T,e!5(
l , j

E dnkW

~2p!n21 d@e2ek2e f1 l\V#

3J2 j S 2
ekW•EW

mV2 sin~VT! D Jl 1 j S v f

V
cos~2VT! D .

~65!

The dimensionality is entirely contained in the remaining
momentum integration*dnkW /(2p)n21. We note that Eq.
~65! implies a shift of the absorption edge bye f . The term
l\V in the Diracd function gives rise to photonic sidebands.
Since J2l(x) is an even function, the density of states is
invariant under the transformationEW→2EW , as expected. In
the following subsections we shall consider the 1D, 2D, and
3D systems separately, and show how the density of states
smoothly evolves from a low-field intensity regime into a
high-field intensity regime, making the nonlinear effects of
the THz field apparent.

A. Generalized density of states, one dimension

The density of states for a single-mode 1D system
~‘‘quantum wire’’! in the absence of external fields is

r0
1D~T,e!5

1

p S 2m

\2 D 1/2

e21/2u~e!. ~66!

In the presence of an external strong oscillating field, from
~65! we obtain that the GDOS is

r1D~T,e!5(
l , j

E
2`

`

dk d@e2ek2e f1 l\V#

3J2 j SA32e fek

\V
sin~VT! D

3Jl 1 j S e f

\V
cos~2VT! D

5(
l

r l
1D~T,e2e f1 l\V!r0

1D~e2e f1 l\V!,

~67!

where the sideband weights are

r l
1D~T,e!5(

j
J2 j SA32e fe

\V
sin~VT! D

3Jl 1 j S e f

\V
cos~2VT! D . ~68!
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We note that, in the limite f→0,

r l
1D~T,e!→d l ,0 , ~69!

and r1D(T,e)→r0
1D(e), as expected. IfV is in the THz

regime, then most experiments would probe the time-
averaged absorption. The time average of the sideband
weights is calculated from

r̄ l
1D~e!5(

j
E

0

2p ds

2p
J2 j SA32e fe

\V
sin~s! D

3Jl 1 j S e f

\V
cos~2s! D , ~70!

which for l odd yields

r̄ l
1D~e!5(

j
E

0

2p ds

2p
J4 j 12SA32e fe

\V
sin~s! D

3J2 j 1 l 11S e f

\V
cos~2s! D , ~71!

and, for l even,

r̄ l
1D~e!5(

j
E

0

2p ds

2p
J4 j SA32e fe

\V
sin~s! D

3J2 j 1 l S e f

\V
cos~2s! D . ~72!

At the onset of sidebandl , the sideband weight is

r̄ l
1D~0!5 H 0

Jl /2
2 ~e f /\V!

if l odd
if l even, ~73!

where we used the identity28

E
0

2p

du J2l~a cosu!52pJl
2~a!. ~74!

This shows that processes involving an odd number of pho-
tons of the THz field are strongly suppressed. In Fig. 1 we
illustrate rave

1D(e) for a range of values ofe f /\V. In the
figures we writeee5\V. We observe all the signatures of
the dynamical Franz-Keldysh effect~DFK!:7 the Stark-like
blueshift of the main absorption edge bye f , the formation of
sidebands ateg1e f6N\V, and finite absorption within the
band gap.

B. Generalized density of states, two dimensions

Several authors considered fields perpendicular to the
quantum well~cf. Ref. 29 and references therein!; here we
focus on the situation where the electric field is in the plane
of the two-dimensional electron gas. In such a system with
no external field, the density of states is constant,

r0
2D~e!5

m

p\2 u~e!. ~75!

With a harmonically oscillating field, we obtain, from Eq.
~65!,

r2D~T,e!5(
l , j

E
0

`

dk kE
0

2p du

2p
d@e2ek2e f1 l\V#

3J2 j SA32e fek

\V
cosu sin~VT! D

3Jl 1 j S e f

\V
cos~2VT! D . ~76!

The integrals in Eq.~76! are again performed using Eq.~74!,
and writing the result in the sideband picture, we obtain30

r2D~T,e!5(
l

r l
2D~T,e2e f1 l\V!r0

2D~e2e f1 l\V!,

~77!

where the sideband weights are

r l
2D~T,e!5(

j
Jj

2SA32e fe

\V
sin~VT! D Jl 1 j S e f

\V
cos~2VT! D .

~78!

Identical arguments as in the 1D case lead to

r̄ l
2D~0!5 H 0

Jl /2
2 ~e f /\V!

if l odd
if l even, ~79!

i.e., the same result as in the 1D case.
As in the 1D case, we have numerically investigated the

time averaged GDOSrave
2D(e)5 (V/2p) *0

2p/VdT r2D(T,e).
In Fig. 2 we illustraterave

2D(e) for various values ofe f /\V.
Again, as in the 1D case, we observe all the characteristics of
the DFK.7 Finally, Fig. 3 shows the DTS signal.

C. Generalized density of states, three dimensions

Absorption in bulk semiconductors subject to THz radia-
tion was considered a long time ago by Yacoby,5 and later by
Rebane.6 These papers studied transition rates between bands
by investigating approximate solutions to the corresponding
time-dependent Schro¨dinger equation. Reference 5 con-

FIG. 1. Time-averaged generalized density of states for a 1D
system shown for a range of FIR intensities,e f /\VP@0,2#. The
band edge and the sidebands display a blueshift, which scales lin-
early with the intensity. Absorption extends below the band gap
~dynamical Franz-Keldysh effect!.
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cluded that transitions occur in the gap, and noted reduced
rates above the gap, in agreement with the present work,
while Ref. 6 pointed out that the absorption egde would be
shifted, likewise in agreement with our work. The 3D field-
free density of states is

r0
3D~e!5

1

2p2 S 2m

\ D 3/2

u~e!e1/2. ~80!

With the external field the density of states becomes

r3D~T,e!5(
l

r l
3D~T,e2e f1 l\V!r0

3D~e2e f1 l\V!,

~81!

with the sideband weights

r l
3D~T,e!5(

j
Jl 1 j S e f

\V
cos~2VT! D

3E
0

1

dh J2 j SA32e fe

\V
sin~VT!h D . ~82!

Again, we have

r̄ l
3D~0!5 H 0

Jl /2
2 ~e f /\V!

if l odd
if l even. ~83!

In Fig. 4 we illustraterave
3D(e) for various values ofe f /\V;

the DTS signal for the 3D case is shown in Fig. 5.

D. Summary

The main physical consequences of the THz field on the
linear absorption spectrum for systems with parabolic disper-
sion can be summarized as follows. The dynamical modifi-
cations of the absorption spectrum~i! appear near the absorp-
tion edge,~ii ! extend a fewee5\V around the edge, and
~iii ! are most pronounced whenv f /V is of order unity.

If V is in the THz regime, and fields like those attainable
with free-electron lasers are considered,2,31 then v f /V'1

FIG. 2. The time-averaged GDOS for a 2D system for a range of
FIR intensities,v f /V5(0.0,0.2,0.8,1.4,2.0). At low intensities one
observes a Stark-like blueshift of the band edge, as well as finite
absorption within the band gap. With increasing intensity, side-
bands emerge ate5eg1e f62\V.

FIG. 3. The DTS signal for a 2D system for a range of intensi-
ties,v f /V5(0.2,0.8,1.4,2.0).

FIG. 4. The time-averaged generalized density of states for a 3D
system for a range of FIR intensities,v f /V5(0.0,0.2,0.8,1.4,2.0).

FIG. 5. DTS spectrum for a 3D system.
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and the fine structure extends over an area of several meV.
Consequently, an experimental verification of these effects
should be possible.

VI. SUPERLATTICES

According to the semiclassical Bloch-Boltzmann theory
of transport, a uniform electric field causes charge carriers in
a periodic potential to execute a time-periodic motion with
frequencyvB5eaE/\, where a is the lattice periodicity.
Conditions for observing these Bloch oscillations are much
more favorable in superlattices than in ordinary bulk materi-
als, and recent years have witnessed an intense research ef-
fort culminating in the observation of Bloch oscillations.32 In
ac fields a phenomenon called dynamical localization may
occur: if the parameterg[aeEi /\V equals a zero ofJ0 , the
average velocity vanishes.33 In this section we investigate
how dynamical localization4,33–36manifests itself in the free-
particle absorption spectra. Recently, Meieret al.15 presented
results of a detailed numerical solution of the semiconductor
Bloch equations, including excitonic effects, and found that
at dynamical localization the relative motion exciton wave
function changes from a 3D character~i.e., localized inkz
space! to a 2D structure~extended inkz space!, and below
we shall illustrate how the same phenomenon reflects itself
in the present analytic study of free-particle properties.

A. Generalized density of states

The starting point for our analysis is the effective disper-
sion ~54! introduced in Sec. IV B, which we reproduce here
for the convenience of the reader:

eeff@kW #5
1

2
leff cos~aki!1

\2k'
2

2meff
1eg . ~84!

Henceforth we puteg50, and drop the ‘‘eff’’ subscript. We
consider the effect of the THz field described by the vector
potential AW (t)52EW sin(Vt)/V, where EW 5(0,0,Ei). In ac-
cordance with Sec. IV, we calculate the generalized density
of states from

rsl~T,t!5
m

2p2\3 E
0

`

de'E
0

2p/a

dkie2 i e't/\

3exp@2 i I ~T,t!#, ~85!

I ~T,t!5
l

2\ E
T2t/2

T1t/2

ds cos@aki1g sin~Vs!#. ~86!

We evaluate the integral within the exponential using iden-
tity ~64!, with the result

I ~T,t!5
l

2\V H cos~aki!FC~Vt!1J0~g!
lt

2\ G
1sin~aki!S~Vt!J , ~87!

where

C~z!52(
n51

`
J2n~g!cos@2nVT#

n
sin@nz#, ~88!

S~z!52(
n51

`
J2n21~g!sin@~2n21!VT#

n21/2
sin@~n21/2!z#.

~89!

We have suppressed the explicit dependence ofVT andg in
C(z) andS(z) for simplicity. Note that both of these func-
tions are antisymmetric inz, i.e., C(2z)52C(z) and
S(2z)52S(z). The identity28

E
0

2p du

2p
exp$ ia cosu1 ib sin u%5J0~Aa21b2! ~90!

is the key to the next step in the evaluation of Eq.~85!, and
allows us to write

rsl~T,t!5
m

2p2\3a E
0

`

de'e2 i e't/\K~Vt! ~91!

where we have defined the kernel

K~z!5J0S l

2\V
A@C~z!1J0~g!z#21S2~z! D . ~92!

Also here, we have suppressed the explicit dependence of
VT andg. In a distribution sense we can write

E
0

`

de'e2 i e't/\5
2 i\

t2 i01 , ~93!

where 01 indicates a positive infinitesimal. This expression
allows us to compute the Fourier transform of Eq.~91!,

rsl~T,e!5
m

2p2\2a S E
2`

`

dt
sin~et/\!

t
K~Vt!1p D .

~94!

In what follows we shall examine several properties of this
result.

B. Field-free limit

In the limit of vanishing field strength we have

lim
g→0
K~z!5J0S lz

2\V D . ~95!

Using the identity28

E
2`

` dx

x
sin~bx!J0~x!5H p

2 arcsinb
2p

@b.1#

@b2,1#

@b,21#,
~96!

we obtain the density of states for a tight-binding superlat-
tice,
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rsl~e!5
m

p\2a H 1
1

p
arcsin~2e/l!11/2

0

@e.l/2#

@ ueu<l/2#

@e,2l/2#,

~97!

which is familiar.

C. Static limit

In the limit V→0 one obtains

lim
V→0

K~Vt!5J0S l

2\vB
sin~vBt! D . ~98!

Recalling the identities28

J0~z sin a!5(
j

Jj
2~z/2!cos~2ka! ~99!

and

E
2`

`

dx cos~ax!sin~bx!/x5p@u~a1b!2u~a2b!#,

~100!

we obtain the density of states

rsl~e!5
m

p\2a (
j

Jj
2S l

4\vB
D u~e12 j \vB!. ~101!

This result coincides with the one obtained in Refs. 37 and
38, which studied both theoretically and experimentally the
effects of strong static fields on the absorption in superlattice
structures. They concluded that the steplike behavior of
~101! is due to localization in the growth direction~Wannier-
Stark localization!.

D. Dynamic localization

As seen in Sec. IV C, the signature of localization in the
growth direction in a superlattice is a steplike behavior of the
density of states. This is intuitively clear since the density of
states for a 2D system@Eq. ~75!# is constant. We therefore
expect the density of states to be composed of a step function
for each well the states extend into, with weight relative to
the occupation in that particular well. We shall now show
that if J0(g)50, i.e., the conditions for dynamical localiza-
tion are met, then GDOS indeed is of this kind. The argu-
ment runs as follows. IfJ0(g)50 then kernel~92! is peri-
odic in z with period 2p. Furthermore, the kernel is an even
function:K(z)5K(2z). We can therefore formally write

K~Vt!5(
j
Kj cos~kVt!,

which is of the same functional form as in the static limit
@Eq. ~98!#. Consequently, we may conclude that the general-
ized density of states must be of the form

rdyn. loc
sl ~e!5

m

p\2a (
j
Kju~e1 j \V!, ~102!

i.e., it is a superposition of step functions. The weightsK j ,
however, must be evaluated numerically, and examples are
given in Sec. VI E. It is important to note that the ‘‘step
length’’ in the ac case is determined by the frequency of the
THz field, in contrast to the static case, where it is deter-
mined by the field strength. The field strength enters the
density of states only through the weight factorsK j .

Result~102! suggests that it should be possible to probe
dynamic localization by photoabsorption: when the appropri-
ate conditions are approached, the absorption coefficient
should change qualitatively from a generic smooth behavior
to a sharply defined steplike structure. The number of dis-
tinct steps appearing in the spectrum is determined by the
ratio l/\V, which is also a measure of the number of wells
the localized states span. This is fully consistent with the
results of Ref. 15, whose authors considered a miniband of
width l521 meV and a FIR frequency\V520 meV,
which essentially allows just one step, and hence a maximum
binding energy of the corresponding exciton which would be

FIG. 6. The time averaged GDOS for a superlattice with effec-
tive bandwidthl53.4\V. The proximity of dynamical localization
occurring atg52.4048 . . . reflects itself in the stepwise structure of
the dashed curve.

FIG. 7. The time-averaged GDOS for a superlattice with
l53.4\V as a function of FIR intensity. At lowg, sidebands are
observed, which merge atg52.4048 . . . , corresponding to dy-
namical localization.
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mostly confined to a single well. Interestingly, Eq.~102! sug-
gests an interpretation of the feature at 1534 meV, which
Meier et al. found ‘‘unexpected:’’ in our picture it is the
photon replica of the main exciton peak; since this occurs at
.1552 meV and the photon energy is 20 meV, the agree-
ment is very good indeed.

E. Numerical results

We again focus our numerical study to the time-averaged
generalized density of states

rave
sl ~e!5~V/2p!*0

2p/VdTrsl3~T,e!.

In Figs. 6 and 7 we show the absorption spectra for a super-
lattice with an effective bandwidthl53.4\V. The numeri-
cal results confirm the expectations of Sec. VI D: when
g5aeEi /\V approaches the first zero ofJ0 , which occurs
at the argument value of 2.4048 . . . , thegradually evolving
replicas of the zero-field density of states converge into pla-
teaus of finite width. The exactness of the plateaus can be
judged from Fig. 7: atg52.4048 . . . , theline joining the
the steps appears near vertical. Finally, in Fig. 8 we show the
DTS spectra at dynamical localization~DL! and non-DL
conditions. There are two characteristic differences:~i! Out-
side the zero-field miniband, DL leads to a steplike structure
in contrast to the smooth behavior found otherwise; and~ii !
inside the miniband the DL spectrum distinguishes itself by
its sharp jagged structure.

VII. CONCLUSIONS

We have presented a theoretical formulation of linear
photoabsorption for samples under strongly nonequilibrium
conditions. Typical nonequilibrium agents would be THz ra-
diation from free-electron lasers, or ultrashort pulse measure-
ments of transient effects. In the present work noninteracting
carriers are considered, but the formulation allows an exten-
sion to Coulomb interactions, which will be addressed in a

subsequent paper. Two central concepts emerge from our
analysis: a generalization of the density of states into time-
dependent conditions@the GDOS defined in Eq.~56!#, and
photonic sidebands~i.e., photon replicas!, which form a con-
venient framework for discussing the various features of the
absorption spectra.
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