270 research outputs found

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    Polymer-Nanoparticle Complexes : from Dilute Solution to Solid State

    Full text link
    We report on the formation and the structural properties of supermicellar aggregates also called electrostatic complexes, made from mineral nanoparticles and polyelectrolyte-neutral block copolymers in aqueous solutions. The mineral particles put under scrutiny are ultra-fine and positively charged yttrium hydroxyacetate nanoparticles. Combining light, neutron and x-ray scattering experiments, we have characterized the sizes and the aggregation numbers of the organic-inorganic complexes. We have found that the hybrid aggregates have typical sizes in the range 100 nm and exhibit a remarkable colloidal stability with respect to ionic strength and concentration variations. Solid films with thicknesses up to several hundreds of micrometers were cast from solutions, resulting in a bulk polymer matrix in which nanoparticle clusters are dispersed and immobilized. It was found in addition that the structure of the complexes remains practically unchanged during film casting.Comment: 18 pages, 11 figures, 2 table

    Carbon Nanotubes in Tissue Engineering

    Get PDF
    For their peculiar features carbon nanotubes (CNTs) are emerging in many areas of nanotechnology applications. CNT-based technology has been increasingly proposed for biomedical applications, to develop biomolecule nanocarriers, bionanosensors and smart material for tissue engineering purposes. In the following chapter this latter application will be explored, describing why CNTs can be considered an ideal material able to support and boost the growth and the proliferation of many kind of tissues

    Multifunctional Gold Nanocarriers for Cancer Theranostics - From Bench to Bedside and Back Again?

    Get PDF

    Directed Self-Assembly: Expectations and Achievements

    Get PDF
    Nanotechnology has been a revolutionary thrust in recent years of development of science and technology for its broad appeal for employing a novel idea for relevant technological applications in particular and for mass-scale production and marketing as common man commodity in general. An interesting aspect of this emergent technology is that it involves scientific research community and relevant industries alike. Top–down and bottom–up approaches are two broad division of production of nanoscale materials in general. However, both the approaches have their own limits as far as large-scale production and cost involved are concerned. Therefore, novel new techniques are desired to be developed to optimize production and cost. Directed self-assembly seems to be a promising technique in this regard; which can work as a bridge between the top–down and bottom–up approaches. This article reviews how directed self-assembly as a technique has grown up and outlines its future prospects

    Doing synthetic biology with photosynthetic microorganisms

    Get PDF
    The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.Peer reviewe
    corecore