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Abstract

in nude mice using immunohistochemistry.

Vivo.

Purpose: The purpose of this study is to develop a simple, effective method to label hepatoma cells with aptamers
and then detect them using fluorescent silica nanoparticles (FSNPs).

Method: Streptavidin was conjugated to carboxyl-modified fluorescein isothiocyanate (FITC)-doped silica nanoparticles
which were prepared by the reverse microemulsion method. The resulting streptavidin-conjugated fluorescent
silica nanoparticles (SA-FSNPs) were mixed with hepatoma cells that had been labeled with biotin-conjugated
aptamer TLS11a (Bio-TLS11a). The specificity and sensitivity of the nanoprobes were assessed using flow cytometry and
fluorescence microscopy. Their toxicity was assessed in normal human liver cell cultures using the MTT assay, as well as

Results: SA-FSNPs showed uniform size and shape, and fluorescence properties of them was similar to the free FITC
dye. SA-FSNPs were able to detect aptamer-labeled hepatoma cells with excellent specificity and good sensitivity, and
they emitted strong, photobleach-resistant fluorescent signal. SA-FSNPs showed no significant toxic effects in vitro or in

Conclusion: The combination of biotin-conjugated aptamers and SA-FSNPs shows promise for sensitive detection of
hepatoma cells, and potentially of other tumor cell types as well.

Keywords: Aptamer, Fluorescent nanoparticles, Hepatoma, Cancer

Background
Early diagnosis of cancer is key to improving the survival
and prognosis of cancer patients [1]. Most cancer detection
methods, including blood biochemistry, genetic analysis,
and imaging have disadvantages such as low sensitivity,
high false-positive rates, high cost or complex procedures
[2, 3]. Thus, researchers continue to investigate ways to
detect tumor cells simply and effectively in early stages of
cancer.

While traditional antibodies against tumor markers can
aid in cancer diagnosis, recently developed “chemical
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antibodies”, which are short sequences of single-stranded
DNA or RNA known as aptamers, may prove to be super-
ior. Aptamers specifically recognize targets such as small
molecules, protein, virus, bacteria, and whole cells [4, 5].
Aptamers can show higher selectivity and affinity, as well as
lower immunogenicity, than traditional antibodies; apta-
mers are also easier to synthesize, and they can penetrate
tissue more rapidly with fewer toxic effects [5-7].
Hundreds of aptamers against tumor cells, most of them la-
beled with organic dyes, have been described for tumor cell
detection [8—13]. One disadvantage of using these fluores-
cent dye labeled aptamers on their own is that they are
rapidly photobleached, severely hindering their clinical use-
fulness [14].

Recently, the functionalized silica nanoparticles for bio-
sensing have attracted the interest of many researchers
[15-18]. And one way to reduce photobleaching of
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fluorescent-dye labeled aptamers is to conjugate aptamers
to the surface of fluorescent silica nanoparticles (FSNPs)
[19-21]. With their unique core-shell structure, FSNPs
show good biocompatibility, chemical stability, and photo-
stability [22]. Many aptamer-functionalized FSNPs have
been reported that they detect tumor cells and show
clinical potential for cancer diagnosis [23-25]. However,
linking aptamers directly to the nanoparticle surface may
destabilize the nanoparticles by making them so large that
they are cleared from the circulation [26]. It may also limit
the specificity and selectivity of aptamer targeting because
of steric hindrance between the target tumor cells and the
nanoparticles, such as when aptamer DNA “lies down” on
the nanoparticle surface [27]. This is indeed the case with
anti-tumor antibodies, which lose much of their sensi-
tivity and specificity after being conjugated to nano-
particles [28].

To avoid these potential problems arising from conju-
gating aptamers directly to FSNPs, we have developed an
alternative approach in which the aptamer and FSNP are
physically separate but interact via extremely strong
biotin-streptavidin interaction (Fig. 1). HepG2 cells are in-
cubated first with biotin-labeled TLS1la aptamer (Bio-
TLS11a) and then with streptavidin-conjugated FSNPs
(SA-FSNPs). The SA-FSNPs then bind and interact with
cells where the biotin-labeled aptamer has bound. This
approach avoids the limitations intrinsic to nanoparticle
surface modification, and it may allow efficient, sensitive
detection of cancer cells in vitro.

Methods

Cells and Animals

Human hepatoma cell line HepG2, human normal liver cell
line L0O2, and human embryonic kidney cell line 293T were
purchased from the Cell Bank of the Chinese Academy of
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Sciences (Shanghai, China). All cell lines were cultured
at 37 °C under 5% CO, in DMEM supplemented with
10% fetal bovine serum (FBS, Hyclone) and penicillin-
streptomycin (Gibco, Grand Island, NY, USA).

Female BALB/c nude mice aged 4—6 weeks were obtained
from the Guangxi Laboratory Animal Center (Guangxi,
China) and housed in laminar flow cabinets under
pathogen-free conditions. All experimental protocols were
approved by the Animal Ethics Committee of Guangxi
Medical University (Nanning, Guangxi, China).

Reagents

Fluorescein isothiocyanate (FITC), cyclohexane, Triton
X-100, n-hexanol, bovine serum albumin (BSA), acetone,
tetraethyl orthosilicate (TEOS), (3-aminopropyl) trieth
oxysilane (APTES), 3-aminopropylmethyldimethoxysilane
(APTMS), 1-ethyl-3-(3-dimethylaminopropyl) carbodii
mide hydrochloride (EDC) N-hydroxysulfosuccinimide so-
dium salt (sulfo-NHS) and polyoxymethylene were bought
from Sigma (St. Louis, MO, USA). Ethanol, dimethyl sulf-
oxide (DMSO), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide (MTT), and hematoxylin-eosin (HE)
were purchased from Solarbio (Beijing, China). The nu-
clear dye 4’,6-diamidino-2-phenylindole (DAPI) was pur-
chased from Life Technologies (USA). The biotin-labeled
aptamer 5'-bio-(CH2)6-AGTAATGCCCGGTAGTTATT
CAAAGATGAGTAGGAAAAGA-3" (Bio-TLS1la) and
FITC-labeled aptamer 5'-FITC-AGTAATGCCCGGTAG
TTATTCAAAGATGAGTAGGAAAAGA-3' (FITC-TLS1
la) were synthesized by Shanghai Sangon Biotechnology
(Shanghai, China).

Preparation and Characterization of SA-FSNPs
FITC-doped, carboxyl-modified FSNPs were synthesized as
described [14, 29, 30]. Briefly, a water-in-oil microemulsion
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Fig. 1 Schematic illustration of highly sensitive detection of HepG2 hepatoma cells using a biotin-conjugated aptamer (Bio-TLS11a) and
streptadivin-conjugated fluorescent silica nanoparticles (FSNPs)
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was prepared with FITC, cyclohexane, Triton X-100, 7-hex-
anol, and distilled water, giving rise to FITC-doped silica
nanoparticles. These FSNPs were amine-modified using
TEOS and APTES; the flocculent precipitate was collected
by centrifugation and washed with acetone, followed by
deionized water. The precipitate (2 mg) was dissolved in
1 mL of 0.1-M phosphate-buffered saline (PBS, pH 7.4)
containing EDC (1 mg) and sulfo-NHS (2.5 mg). When the
reaction was complete, 50 pl of streptavidin diluted in PBS
was added to the solution, which was incubated at room
temperature for 4 h with gentle shaking. The nanoparticles
were washed with PBS and then resuspended in 1 ml of
0.05% BSA for 30 min to block free carboxylates, generating
SA-ESNPs. The SA-FSNPs were washed three times with
PBS and stored at 4 °C. For subsequent experiments, the
SA-FSNPs were resuspended in PBS as needed.

The morphology and size distribution of SA-FSNPs
were assessed using transmission electron microscopy
(TEM; H-7650, Japan). Their photoluminescence was
measured using a fluorescence spectrophotometer (FL-
7000, Perkin Elmer, USA).

Flow Cytometry of Aptamer-Labeled Cells Mixed with SA-
FSNPs

HepG2 or L02 cells (3.0 x 10° cells/ml) were harvested,
washed three times with PBS, then incubated with for
30 min either with SA-FSNPs (ca. 0.1 mg, 1 ml) at room
temperature or with FITC-TLS11la (100 nM) on ice. In
either case, the cells and labeling agents were suspended
in binding buffer (200 pl) prepared by supplementing
PBS with 4.5 g/L of glucose and 5 mM of MgCl,. Other
cell suspensions were incubated with Bio-TLS1la
(100 nM) at 4 °C for 30 min, followed by SA-FSNPs (ca.
0.1 mg, 1 ml) at 37 °C for 60 min with gentle shaking.
All suspensions were washed three times with PBS, sus-
pended in 500 pl of binding buffer, and then analyzed by
flow cytometry (Epics XL, Beckman Coulter, USA) using
FLOW]JO 7.6 software.

Fluorescence Microscopy of Aptamer-Labeled Cells Mixed
with SA-FSNPs

HepG2 and L02 cells were cultured for 12 h in 6-
well plates (3 x 10° cells per well). Cells were washed
three times with cold PBS, fixed for 15 min with 4%
polyoxymethylene, washed with PBS, and then incu-
bated with SA-FSNPs or FITC-TLS1la, or the se-
quential combination of Bio-TLS11la followed by SA-
FSNPs as described above. Finally, cells were stained
with DAPI for 90 s, washed with PBS, and analyzed
by fluorescence microscopy (DS-Ril; Nikon Corporation,
Tokyo, Japan). Fluorescence intensity was quantitated
using Image Pro (Media Cybernetics, Bethesda, MD,
USA).
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In Vitro Toxicity of SA-FSNPs

Toxicity of SA-FSNPs against 293T or L02 cells was
assessed using the MTT assay. Cells (2 x 10° /ml) were
cultured overnight in 96-well plates, then treated with
SA-FSNPs (0.1, 0.5, or 1.0 mg/ml) for 12, 24, or 48 h.
Control cells were treated with PBS. At specific time
points, 10 pl of MTT (5 mg/ml) was added to wells, and
plates were incubated at room temperature for 4 h in
the dark. The medium was discarded, 150 pl of DMSO
was added to each well, and plates were incubated for
10 min. Optical density (OD) at 570 nm was measured
using an ELISA microplate reader (Thermo Scientific,
USA). Cell viability was calculated using the formula:

Viability (%) = ODexperimental/ ODcontrol X 100 %.

In Vivo Toxicity of SA-FSNPs

Nude mice received a single tail vein injection of 200-ul
PBS or SA-FSNPs (1 mg/ml) (=3 animals per group).
After 1 week, the animals were sacrificed, and the major
tissues (heart, lung, liver, spleen, kidney) were immersed
in 10% formaldehyde solution, dehydrated, and paraffin-
embedded. Paraffin sections (4 pm thick) were processed
using routine methods and stained with HE.

Statistical Analyses

Statistical analysis was performed using Student’s ¢ test
and analysis of variance (ANOVA) in GraphPad Prism
software (San Diego, CA, USA), with P <0.05 defined as
the significance threshold. Data were shown as mean +
SD or as median (range).

Results and Discussion

Here, we explored the possibility of detecting human
hepatoma HepG2 cells, a common cell model for liver
cancer studies, using aptamer TLS11a, which was originally
selected through the SELEX method to bind specifically to
HepG2 cells and which shows promise for targeted
diagnostics and therapy of hepatocellular carcinoma
[10, 31-33]. In contrast to previous approaches in which
the aptamer was conjugated to the surface of FSNPs,
potentially limiting the sensitivity of aptamer-based detec-
tion, we kept the aptamer and FSNPs physically separate
but we conjugated the former to biotin and the latter to
streptavidin to allow for strong, specific interaction. Separ-
ating aptamer binding to target cells from FSNP binding
to aptamer may allow a larger number of aptamers to bind
to each target cell, amplifying the fluorescence signal.

Characterization of SA-FSNPs

Transmission electron microscopy showed SA-FSNPs to
be nearly monodisperse and spherical, with an average
diameter of 75.47 +2.52 nm (Fig. 2a). The core-shell
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Fig. 2 Characterization of SA-FSNPs. a Transmission electron micrograph of SA-FSNPs. b Fluorescence emission spectra of FITC dye and SA-FSNPs
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structure of silica nanoparticles allows fluorescent dyes
such as FITC to be trapped inside [34, 35]. Using rhoda-
mine B in ethanol solution as a reference [36], the fluor-
escence quantum yields of FITC dye-doped silica
nanoparticles were about 0.52. The maximum emission

wavelength of free FITC dye and SA-FSNPs was 522 and
525 nm, respectively (Fig. 2b). The emission peak of SA-
FSNPs is slightly red-shifted from FITC, which may be
due to the loss of energy due to the interaction of silica
substrate with the dye [37].
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Fig. 4 Fluorescence micrographs of HepG2 and L02 cells after incubation with SA-FSNPs or FITC-TLS11a or the combination of Bio-TLS11a and
SA-FSNPs. SA-FSNPs and FITC were examined in the green channel, while DAPI-stained nuclei were examined in the blue channel

Flow Cytometry of aptamer-Labeled Cells Mixed with SA- served as negative cells, and FITC-TLS11a was used as a
FSNPs control probe. For the detection of HepG2 cells, stronger
To determine whether the synthesized SA-FSNPs can be  fluorescence intensity was found on Bio-TLS11la combined
used as a detection probe for aptamer-labeled cells, HepG2  with SA-FSNPs (Bio-TLS11a + SA-FSNPs) and FITC-
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0 min 1 min 2 min 5 min 10 min

Q

Bio-TLS11a
+SA-FSNPs
.
.
.

FITC-TLS11a

-
-

120+ Bl Bio-TLS11a+SA-FSNPs
Bl FITC-TLS1a

1004 | | |

Time (min)

H [=2] =]
o o o
1 1 1

Fluorescence intensity
N
o
L

o
1

Fig. 5 Photostability of FITC-TLS11a and of the combination of Bio-TLS11a with SA-FSNPs. a Fluorescence micrographs of HepG2 cells labeled with the
combination of Bio-TLST1a and SA-FSNPs (upper row) or with FITC-TLS11a alone (lower row) and then continuously irradiated for the indicated periods. b
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the binding rate of HepG2 cells showed the similar results
(Fig. 3a, panel b). Additionally, there was no fluorescence
signal on LO2 cells after treating with SA-FSNPs alone,
FITC-TLS1la and Bio-TLS1la+ SA-FSNPs, respectively
(Fig. 3b, panel a), in accordance with the results of statis-
tical graph of the binding rate of L02 cells (Fig. 3b, panel b).
These results suggest that the sequential combination of
Bio-TLS11a with SA-FSNPs can detect HepG2 cells with
higher specificity than FITC-TLS11a.

Fluorescence Microscopy of Aptamer-Labeled Cells Mixed
with SA-FSNPs

To allow a more direct visualization of HepG2 detection
using our system, we used fluorescence microscopy to
examine HepG2 cells incubated with SA-FSNPs or FITC-
TLS1la or Bio-TLS1la+SA-ESNPs. As can be seen
distinctly in fluorescence images, both FITC-TLS11a and
Bio-TLS11a + SA-FSNPs showed green fluorescence on
periphery of HepG2 cells, while SA-FSNPs did not. Fur-
thermore, the fluorescence intensity of Bio-TLS11a + SA-
ESNPs was stronger than FITC-TLS11a (Fig. 4a). No green
fluorescence was observed on L02 cells after incubation
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with SA-FSNPs alone, FITC-TLS11la and Bio-TLS11la +
SA-FSNPs, respectively (Fig. 4b), which was consistent
with the analysis of flow cytometry. Therefore, we could
agree that aptamer TLS1la could recognize and bind
HepG2 cells with high affinity and specificity. Moreover,
fluorescence signal from HepG2 cells is owing to the
interaction between Bio-TLS11a labeled HepG2 cells and
the SA-FSNPs. The SA-FSNPs display stronger fluores-
cent signals than the FITC-labeled aptamer probably due
to the special core-shell structure of silica nanoparticles
which allow the fluorescent dyes entrapped inside to pre-
vent them from photodamaging oxidation [38—42].

Photostability of SA-FSNPs

Fluorescent dye molecules can quench easily after irradi-
ation, limiting their usefulness. Doping fluorophores within
porous silica nanoparticles can improve their photostability
while maintaining their strong fluorescence emission
[34, 35]. We measured the photostability of SA-FSNPs
by mixing them with aptamer-labeled HepG2 cells and
imaging the cells by fluorescence microscopy after
continuous illumination lasting 0, 1, 5, and 10 min. In
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parallel, cells treated with FITC-aptamer alone were
imaged in the same way. Green fluorescence from SA-
FSNPs remained clearly visible even after intense irradi-
ation for 10 min, whereas fluorescence from FITC-
TLS11a had nearly disappeared after 2 min (Fig. 5). These
results are consistent with the idea that fluorescent dye
molecules are encapsulated within the silica matrix,
where they are kept separate from potential quenchers
and photo-oxidizers [39-42].

Toxicity of SA-FSNPs

We assessed the cytotoxicity of SA-FSNPs on cul-
tures of the normal cell lines 293T and LO02. Viability
of both cell lines was high according to the MTT
assay after incubation with various SA-FSNP concen-
trations (Fig. 6a), suggesting that SA-FSNP showed
minimal cytotoxicity. However, FSNPs have a short
half-life in the circulatory system, and the entry of
fluorescent dye molecules into the blood may in-
crease the risk of systemic toxicity [43]. Therefore, it
is necessary to evaluate the toxicity of SA-FSNPs in
vivo. We further studied the in vivo toxicity of SA-
FSNPs in nude mice. After intravenous injection of
SA-FSNPs for 1 week, tissue sections of the main or-
gans were stained with HE. As shown in Fig. 6b,
there were no significant inflammation or necrosis
observed on tissue sections. These results confirmed
that SA-FSNPs were almost non-toxic to the main
organs, showing the potential to be clinically useful
as a diagnostic probe.

Conclusions

We have developed an approach to detect hepatoma
cells based on a biotin-labeled aptamer and streptavidin-
modified FSNPs. The strong affinity and specificity of
biotin-TLS11a for HepG2 tumor cells, coupled with the
affinity and specificity of biotin for the streptavidin in
SA-FSNPs, ensure highly specific and sensitive HepG2
detection. In addition, the fluorescence signal from SA-
FSNPs is much stronger and more photostable than the
signal from the FITC-labeled aptamer. SA-FSNPs do not
show obvious toxic effects in vitro or in nude mice,
based on the MTT assay or histology of major organs.
This two-step labeling system may be adaptable to the
detection of other cancers by changing the aptamer. In
addition, this system may become a useful platform for
targeted therapy if the nanoparticles can be loaded with
anti-tumor drugs or microRNAs.
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