83 research outputs found
Fast Modal Sounds with Scalable Frequency-Domain Synthesis
International audienceAudio rendering of impact sounds, such as those caused by falling objects or explosion debris, adds realism to interactive 3D audiovisual applications, and can be convincingly achieved using modal sound synthesis. Unfortunately, mode-based computations can become prohibitively expensive when many objects, each with many modes, are impacted simultaneously. We introduce a fast sound synthesis approach, based on short-time Fourier Tranforms, that exploits the inherent sparsity of modal sounds in the frequency domain. For our test scenes, this "fast mode summation" can give speedups of 5-8 times compared to a time-domain solution, with slight degradation in quality. We discuss different reconstruction windows, affecting the quality of impact sound "attacks". Our Fourier-domain processing method allows us to introduce a scalable, real-time, audio processing pipeline for both recorded and modal sounds, with auditory masking and sound source clustering. To avoid abrupt computation peaks, such as during the simultaneous impacts of an explosion, we use crossmodal perception results on audiovisual synchrony to effect temporal scheduling. We also conducted a pilot perceptual user evaluation of our method. Our implementation results show that we can treat complex audiovisual scenes in real time with high quality
Vivos Voco: A survey of recent research on voice transformation at IRCAM
cote interne IRCAM: Lanchantin11cInternational audienceIRCAM has a long experience in analysis, synthesis and transformation of voice. Natural voice transformations are of great interest for many applications and can be combine with text-to-speech system, leading to a powerful creation tool. We present research conducted at IRCAM on voice transformations for the last few years. Transformations can be achieved in a global way by modifying pitch, spectral envelope, durations etc. While it sacrifices the possibility to attain a specific target voice, the approach allows the production of new voices of a high degree of naturalness with different gender and age, modified vocal quality, or another speech style. These transformations can be applied in realtime using ircamTools TRAX. Transformation can also be done in a more specific way in order to transform a voice towards the voice of a target speaker. Finally, we present some recent research on the transformation of expressivity
Direct discovery of the inner exoplanet in the HD206893 system. Evidence for deuterium burning in a planetary-mass companion
Long term precise radial velocity (RV) monitoring of the nearby star
HD206893, as well as anomalies in the system proper motion, have suggested the
presence of an additional, inner companion in the system. Here we describe the
results of a multi-epoch search for the companion responsible for this RV drift
and proper motion anomaly using the VLTI/GRAVITY instrument. Utilizing
information from ongoing precision RV measurements with the HARPS spectrograph,
as well as Gaia host star astrometry, we report a high significance detection
of the companion HD206893c over three epochs, with clear evidence for Keplerian
orbital motion. Our astrometry with 50-100 arcsec precision afforded
by GRAVITY allows us to derive a dynamical mass of 12.7 M and an orbital separation of 3.53 au for HD206893c. Our
fits to the orbits of both companions in the system utilize both Gaia
astrometry and RVs to also provide a precise dynamical estimate of the
previously uncertain mass of the B component, and therefore derive an age of
Myr. We find that theoretical atmospheric/evolutionary models
incorporating deuterium burning for HD206893c, parameterized by cloudy
atmospheres provide a good simultaneous fit to the luminosity of both HD206893B
and c. In addition to utilizing long-term RV information, this effort is an
early example of a direct imaging discovery of a bona fide exoplanet that was
guided in part with Gaia astrometry. Utilizing Gaia astrometry is expected to
be one of the primary techniques going forward to identify and characterize
additional directly imaged planets. Lastly, this discovery is another example
of the power of optical interferometry to directly detect and characterize
extrasolar planets where they form at ice-line orbital separations of 2-4\,au.Comment: Accepted to A&
Cantor Digitalis: chironomic parametric synthesis of singing
Cantor Digitalis is a performative singing synthesizer that is composed of two main parts: a chironomic control interface and a parametric voice synthesizer. The control interface is based on a pen/touch graphic tablet equipped with a template representing vocalic and melodic spaces. Hand and pen positions, pen pressure, and a graphical user interface are assigned to specific vocal controls. This interface allows for real-time accurate control over high-level singing synthesis parameters. The sound generation system is based on a parametric synthesizer that features a spectral voice source model, a vocal tract model consisting of parallel filters for vocalic formants and cascaded with anti-resonance for the spectral effect of hypo-pharynx cavities, and rules for parameter settings and source/filter dependencies between fundamental frequency, vocal effort, and formants. Because Cantor Digitalis is a parametric system, every aspect of voice quality can be controlled (e.g., vocal tract size, aperiodicities in the voice source, vowels, and so forth). It offers several presets for different voice types. Cantor Digitalis has been played on stage in several public concerts, and it has also been proven to be useful as a tool for voice pedagogy. The aim of this article is to provide a comprehensive technical overview of Cantor Digitalis
In-depth direct imaging and spectroscopic characterization of the young Solar System analog HD 95086
Context. HD 95086 is a young nearby Solar System analog hosting a giant exoplanet orbiting at 57 au from the star between an inner and outer debris belt. The existence of additional planets has been suggested as the mechanism that maintains the broad cavity between the two belts.
Aims. We present a dedicated monitoring of HD 95086 with the VLT/SPHERE instrument to refine the orbital and atmospheric properties of HD 95086 b, and to search for additional planets in this system.
Methods. SPHERE observations, spread over ten epochs from 2015 to 2019 and including five new datasets, were used. Combined with archival observations, from VLT/NaCo (2012-2013) and Gemini/GPI (2013-2016), the extended set of astrometric measurements allowed us to refine the orbital properties of HD 95086 b. We also investigated the spectral properties and the presence of a circumplanetary disk around HD 95086 b by using the special fitting tool exploring the diversity of several atmospheric models. In addition, we improved our detection limits in order to search for a putative planet c via the K-Stacker algorithm.
Results. We extracted for the first time the JH low-resolution spectrum of HD 95086 b by stacking the six best epochs, and confirm its very red spectral energy distribution. Combined with additional datasets from GPI and NaCo, our analysis indicates that this very red color can be explained by the presence of a circumplanetary disk around planet b, with a range of high-temperature solutions (1400–1600 K) and significant extinction (Av ≳ 10 mag), or by a super-solar metallicity atmosphere with lower temperatures (800–300 K), and small to medium amount of extinction (Av ≲ 10 mag). We do not find any robust candidates for planet c, but give updated constraints on its potential mass and location
Unveiling the β Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data
Context. The nearby and young β Pictoris system hosts a well resolved disk, a directly imaged massive giant planet orbiting at ≃9 au, as well as an inner planet orbiting at ≃2.7 au, which was recently detected through radial velocity (RV). As such, it offers several unique opportunities for detailed studies of planetary system formation and early evolution. Aims: We aim to further constrain the orbital and physical properties of β Pictoris b and c using a combination of high contrast imaging, long base-line interferometry, and RV data. We also predict the closest approaches or the transit times of both planets, and we constrain the presence of additional planets in the system. Methods: We obtained six additional epochs of SPHERE data, six additional epochs of GRAVITY data, and five additional epochs of RV data. We combined these various types of data in a single Markov-chain Monte Carlo analysis to constrain the orbital parameters and masses of the two planets simultaneously. The analysis takes into account the gravitational influence of both planets on the star and hence their relative astrometry. Secondly, we used the RV and high contrast imaging data to derive the probabilities of presence of additional planets throughout the disk, and we tested the impact of absolute astrometry. Results: The orbital properties of both planets are constrained with a semi-major axis of 9.8 ± 0.4 au and 2.7 ± 0.02 au for b and c, respectively, and eccentricities of 0.09 ± 0.1 and 0.27 ± 0.07, assuming the HIPPARCOS distance. We note that despite these low fitting error bars, the eccentricity of β Pictoris c might still be over-estimated. If no prior is provided on the mass of β Pictoris b, we obtain a very low value that is inconsistent with what is derived from brightness-mass models. When we set an evolutionary model motivated prior to the mass of β Pictoris b, we find a solution in the 10-11 M[SUB]Jup[/SUB] range. Conversely, β Pictoris c's mass is well constrained, at 7.8 ± 0.4 M[SUB]Jup[/SUB], assuming both planets are on coplanar orbits. These values depend on the assumptions on the distance of the β Pictoris system. The absolute astrometry HIPPARCOS-Gaia data are consistent with the solutions presented here at the 2σ level, but these solutions are fully driven by the relative astrometry plus RV data. Finally, we derive unprecedented limits on the presence of additional planets in the disk. We can now exclude the presence of planets that are more massive than about 2.5 M[SUB]Jup[/SUB] closer than 3 au, and more massive than 3.5 M[SUB]Jup[/SUB] between 3 and 7.5 au. Beyond 7.5 au, we exclude the presence of planets that are more massive than 1-2 M[SUB]Jup[/SUB]. Conclusions: Combining relative astrometry and RVs allows one to precisely constrain the orbital parameters of both planets and to give lower limits to potential additional planets throughout the disk. The mass of β Pictoris c is also well constrained, while additional RV data with appropriate observing strategies are required to properly constrain the mass of β Pictoris b.Peer reviewe
Direct confirmation of the radial-velocity planet β Pictoris c
Context. Methods used to detect giant exoplanets can be broadly divided into two categories: indirect and direct. Indirect methods are more sensitive to planets with a small orbital period, whereas direct detection is more sensitive to planets orbiting at a large distance from their host star. This dichotomy makes it difficult to combine the two techniques on a single target at once. Aims: Simultaneous measurements made by direct and indirect techniques offer the possibility of determining the mass and luminosity of planets and a method of testing formation models. Here, we aim to show how long-baseline interferometric observations guided by radial-velocity can be used in such a way. Methods: We observed the recently-discovered giant planet β Pictoris c with GRAVITY, mounted on the Very Large Telescope Interferometer. Results: This study constitutes the first direct confirmation of a planet discovered through radial velocity. We find that the planet has a temperature of T = 1250 ± 50 K and a dynamical mass of M = 8.2 ± 0.8 M[SUB]Jup[/SUB]. At 18.5 ± 2.5 Myr, this puts β Pic c close to a `hot start' track, which is usually associated with formation via disk instability. Conversely, the planet orbits at a distance of 2.7 au, which is too close for disk instability to occur. The low apparent magnitude (M[SUB]K[/SUB] = 14.3 ± 0.1) favours a core accretion scenario. Conclusions: We suggest that this apparent contradiction is a sign of hot core accretion, for example, due to the mass of the planetary core or the existence of a high-temperature accretion shock during formation
The mass of β Pictoris c from β Pictoris b orbital motion
Aims. We aim to demonstrate that the presence and mass of an exoplanet can now be effectively derived from the astrometry of another exoplanet. Methods. We combined previous astrometry of β Pictoris b with a new set of observations from the GRAVITY interferometer. The orbital motion of β Pictoris b is fit using Markov chain Monte Carlo simulations in Jacobi coordinates. The inner planet, β Pictoris c, was also reobserved at a separation of 96 mas, confirming the previous orbital estimations. Results. From the astrometry of planet b only, we can (i) detect the presence of β Pictoris c and (ii) constrain its mass to 10.04-3.10+4.53 MJup. If one adds the astrometry of β Pictoris c, the mass is narrowed down to 9.15-1.06+1.08 MJup. The inclusion of radial velocity measurements does not affect the orbital parameters significantly, but it does slightly decrease the mass estimate to 8.89-0.75+0.75 MJup. With a semimajor axis of 2.68 ± 0.02 au, a period of 1221 ± 15 days, and an eccentricity of 0.32 ± 0.02, the orbital parameters of β Pictoris c are now constrained as precisely as those of β Pictoris b. The orbital configuration is compatible with a high-order mean-motion resonance (7:1). The impact of the resonance on the planets' dynamics would then be negligible with respect to the secular perturbations, which might have played an important role in the eccentricity excitation of the outer planet. © 2021 S. Lacour et al
- …