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Abstract

Audio rendering of impact sounds, such as those caused by falling
objects or explosion debris, adds realism to interactive 3D audio-
visual applications, and can be convincingly achieved using modal
sound synthesis. Unfortunately, mode-based computations can be-
come prohibitively expensive when many objects, each with many
modes, are impacted simultaneously. We introduce a fast sound
synthesis approach, based on short-time Fourier Tranforms, that
exploits the inherent sparsity of modal sounds in the frequency do-
main. For our test scenes, this “fast mode summation” can give
speedups of 5-8 times compared to a time-domain solution, with
slight degradation in quality. We discuss different reconstruction
windows, affecting the quality of impact sound “attacks”. Our
Fourier-domain processing method allows us to introduce a scal-
able, real-time, audio processing pipeline for both recorded and
modal sounds, with auditory masking and sound source clustering.
To avoid abrupt computation peaks, such as during the simultane-
ous impacts of an explosion, we use crossmodal perception results
on audiovisual synchrony to effect temporal scheduling. We also
conducted a pilot perceptual user evaluation of our method. Our
implementation results show that we can treat complex audiovisual
scenes in real time with high quality.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation, I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based model-
ing I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Virtual Reality

Keywords: Sound synthesis, modal synthesis, real-time audio ren-
dering, physically based animation

1 Introduction

The rich content of today’s interactive simulators and video games
includes physical simulation, typically provided by efficient physics
engines, and 3D sound rendering, which greatly increases our sense
of presence in the virtual world [Larsson et al. 2002]. Physical
simulations are a major source of audio events: e.g., debris from
explosions or impacts from collisions (Fig. 1). In recent work sev-
eral methods have been proposed to physically simulate these audio
events notably using modal synthesis [O’Brien et al. 2002; van den
Doel and Pai 2003; James et al. 2006]. Such simulations result
in a much richer virtual experience compared to simple recorded
sounds due to the added variety and improved audio-visual coher-
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Figure 1: Frequency-domain fast mode summation: Top:
Frames of some of the test scenes our method can render in real
time. Bottom: (Left) Time-domain modal synthesis requires sum-
ming all modes at every sample. (Right) Our frequency-domain
modal synthesis exploits the inherent sparsity of the modes’ discrete
Fourier transforms to obtain lower costs per frame.

ence. The user’s audiovisual experience in interactive 3D applica-
tions is greatly enhanced when large numbers of such audio events
are simulated.

Previous modal sound approaches perform time-domain synthe-
sis [van den Doel and Pai 2003]. Recent interactive methods pro-
gressively reduce computational load by reducing the number of
modes in the simulation [Raghuvanshi and Lin 2006; van den Doel
et al. 2004]. Their computational overload however is still too high
to handle environments with large numbers of impacts, especially
given the limited budget allocated to sound processing, as is typi-
cally the case in game engines.

Interactive audiovisual applications also contain many recorded
sounds. Recent advances in interactive 3D sound rendering use
frequency-domain approaches, effecting perceptually validated pro-
gressive processing at the level of Fourier Transform coefficients
[Tsingos 2005]. For faster interactive rendering, perceptually based
auditory masking and sound-source clustering can be used [Tsin-



gos et al. 2004; Moeck et al. 2007]. These algorithms enable the
use of high-quality effects such as Head-Related Transfer Func-
tion (HRTF) spatialization, but are limited to pre-recorded sounds.
While the provision of a common perceptually based pipeline for
both recorded and synthesized sounds would be beneficial, it is not
directly obvious how modal synthesis can be efficiently adapted to
benefit from such solutions. In the particular case of contact sounds,
a frequency-domain representation of the signal must be computed
on-the-fly, since events causing the sounds are triggered and con-
trolled in real-time using the output of the physics engine.

Our solution to the above problems is based on a fundamental intu-
ition: modal sounds have an inherently sparse representation in the
frequency domain. We can thus perform frequency-domain modal
synthesis by fast summation of a small number of Fourier coeffi-
cients (see Fig. 1). To do this, we introduce an efficient approxima-
tion to the short-time Fourier Transform (STFT) for modes. Com-
pared to time-domain modal synthesis [van den Doel and Pai 2003],
we observe 5-8 times speedup in our test scenes, with slight degra-
dation in quality. Quality is further degraded for sounds with faster
decays and high frequencies.

In addition to the inherent speed-up, we can integrate modal and
recorded sounds into a common pipeline, with fine-grain scalable
processing as well as auditory masking and sound clustering. To
compute our STFT we use a constant exponential approximation;
we also reconstruct with an Hann window to simplify integration in
the full pipeline. However, these approximations reduce the quality
of the onset of the impact sound or “attack”. We propose a method
to preserve the attacks (see Sect. 4.3), which can be directly used
for modal sounds; using it in the combined pipeline is slightly more
involved. We use the Hann window since it allows better recon-
struction with a small number of FFT coefficients compared to a
rectangular window. A rectangular window is better at preserving
the attacks, but results in ringing. Our attack-preserving approach
starts with a rectangular subwindow, followed by appropriate Hann
subwindows for correct overlap with subsequent frames.

In contrast to typical usage of pre-recorded ambient sounds,
physics-driven impact sounds often create peaks of computation
load, for example the numerous impacts of debris just after an ex-
plosion. We exploit results from human perception to perform tem-
poral scheduling, thus smoothing out these computational peaks.
We also performed a perceptually based user evaluation both for
quality and temporal scheduling. In summary, our paper has the
following contributions:

• A fast frequency-domain modal synthesis algorithm, leverag-
ing the sparsity of Fourier transforms of modal sounds.

• A full, perceptually based interactive audio rendering pipeline
with scalable processing, auditory masking and sound source
clustering, for both recorded and modal sounds.

• A temporal scheduling approach based on research in percep-
tion, which smooths out computational peaks due to the sud-
den occurrence of a large number of impact sounds.

• A pilot perceptual user study to evaluate our algorithms and
pipeline.

We have implemented our complete pipeline; we present interac-
tive rendering results in Sect. 7 and in the accompanying video for
scenes such as those shown in Fig. 1 and Fig. 6.

2 Previous Work

In what follows we will use the term impact sound to designate
a sound generated as a consequence of an event reported by the

physics engine (impact, contact etc.); we assume that this sound is
synthesized on-the-fly.

There is extensive literature on sound synthesis and on spatializa-
tion for virtual environments. We discuss here only a small selec-
tion of methods directly related to our work: contact sound synthe-
sis in the context of virtual environments, audio rendering of com-
plex soundscapes, and finally crossmodal perception, which we use
to smooth computational peaks.

Contact sound synthesis Modal synthesis excites the pre-
computed vibration modes of the objects by the contact force to
synthesize the corresponding audio signal. In our context, this force
is most often provided by a real-time physics engine. The acoustic
response of an object to an impulse is given by:

s(t) = ∑
k

ake−αkt sin(ωkt), (1)

where s(t) is the time-domain representation of the signal, ωk is
the angular frequency and αk is the decay rate of mode k; ak is the
amplitude of the mode, which is calculated on the fly (see below),
and may contain a radiation factor (e.g., see [James et al. 2006]).
Eq. 1 can be efficiently implemented using a recursive formula-
tion [van den Doel and Pai 2003] which makes modal synthesis
attractive to represent contact sounds, both in terms of speed and
memory. We define mk(t) as follows for notational convenience:

mk(t) = e−αkt sin(ωkt) (2)

The modal frequencies ωk’s and decay rates αk’s can be pre-
computed by simulating the mechanical behavior of each specific
object independently. Such simulations can be done through fi-
nite elements methods [O’Brien et al. 2002], spring-mass system
[Raghuvanshi and Lin 2006], or even with analytic solutions for
simple cases [van den Doel et al. 2004]. The only quantities which
must be computed at run-time are the gains ak since they depend on
the contact position on the objects, the applied force, and the listen-
ing position. Other methods based on measurements of the modes
of certain objects are also possible [Pai et al. 2001], resulting in the
precomputation of the gains.

Audio rendering for complex soundscapes There has been some
work on modal sound synthesis for complex scenes. In [van den
Doel et al. 2004] a method is presented handling hundreds of im-
pact sounds. Although their frequency masking approach was vali-
dated by a user study [van den Doel et al. 2002], the mode culling
algorithm considers each mode independently, removing those be-
low audible threshold. [Raghuvanshi and Lin 2006] proposed a
method based on mode pruning and sound sorting by mode ampli-
tude; no perceptual validation of the approximation was presented
however. For both, the granularity of progressive modal synthesis
is the mode; in the examples they show, a few thousand modes are
synthesized in real time.

For pre-recorded sampled sounds, Tsingos et al. [2004] have pro-
posed an approach based on precomputed perceptual data which are
used to cull, mask and prioritize sounds in realtime. This approach
was later extended to a fully scalable processing pipeline that ex-
ploits the sparseness of the input audio signal in the Fourier domain
to provide scalable or progressive rendering of complex mixtures
of sounds [Tsingos 2005; Moeck et al. 2007]. They handle audio
spatialization of several thousands of sound sources via clustering.
One drawback related to precomputed metadata is that sounds syn-
thesized in real time, such as modal sounds, are not supported.

Cross-modal perceptual phenomena Audio-visual tolerance in
asynchrony can be exploited for improved scheduling in audio ren-
dering. The question of whether visual and auditory events are



perceived as simultaneous has been extensively studied in neuro-
science. Different physical and neural delays in the transmission
of signals can result in “contamination” of temporal congruency.
Therefore, the brain needs to compensate for temporal lags to recal-
ibrate audiovisual simultaneity [Fujisaki et al. 2004]. For this rea-
son, it is difficult to establish a time window during which percep-
tion of synchrony is guaranteed, since it depends both on the nature
of the event (moving or not) and its position in space (distance and
direction) [Alais and Carlile 2005]. Some studies report that delay-
ing a sound may actually improve perception of synchrony with re-
spect to visuals [Begault 1999]. One study [Guski and Troje 2003]
(among others [Sekuler et al. 1997; Sugita and Suzuki 2003]), re-
ports that a temporal window of 200 msec represents the tolerance
of our perception for a sound event to be considered the conse-
quence of the visual event. We will therefore adopt this value as a
threshold for our temporal scheduling algorithm.

3 Our Approach

Overview The basic intuition behind our work is the fact that modal
sounds have a sparse frequency domain representation. We will
show some numerical evidence of this sparsity with examples, and
then present our fast frequency-domain modal synthesis algorithm.
To achieve this we introduce our efficient STFT approximation for
modes, based on singular distributions. We then discuss our full
perceptual pipeline including scalable processing, auditory mask-
ing and sound source clustering. We introduce a fast energy esti-
mator for modes, used both for masking and appropriate budget al-
location. We next present our temporal scheduling approach which
smooths out computation peaks due to abrupt increases in the num-
ber of impacts. After discussing our implementation and results, we
describe our pilot perceptual user study, allowing us to evaluate the
overall quality of our approximations and the perception of asyn-
chrony. Analysis of our experimental results gives an indication of
the perceptual validity of our approach.

Fourier-domain mode mixing Traditional time-domain modal
synthesis computes Eq. 1 for each sample in time. For frequency-
domain synthesis we use the discrete Fourier transform (FFT) of
the signal (we show how to obtain this in Sect. 4.1). If we use a
1024-sample FFT we will obtain 512 complex coefficients or bins
representing the signal of a given audio frame (since our signals
are real-valued we will only consider positive frequencies). For
each such frame, we add the coefficients of each mode in the fre-
quency domain, and then perform an inverse FFT (see Fig. 1) once
per frame, after all sounds have been added together. The inverse
FFT represents a negligible overhead, with a cost of 0.023 msec
using an unoptimized implementation [Press et al. 1992]. If the
number of coefficients contributed by each mode is much less than
512, frequency-domain mixing will be more efficient than an equiv-
alent time-domain approach. However, this will also result in lossy
reconstruction, requiring overlapping frames to be blended to avoid
possible artifacts in the time-domain. Such artifacts will be caused
by discontinuities at frame boundaries resulting in very noticeable
clicks. To avoid these artifacts, a window function is used, typically
a Hann window. Numerous other options are available in standard
signal processing literature [Oppenheim et al. 1999]. Our method
shares some similarities with the work of [Rodet and Depalle 1992]
which uses inverse FFTs for additive synthesis.

In what follows we assume that our audio frames overlap by a 50%
factor, bringing-in and reconstructing only 512 new time-domain
samples at each processing frame using a 1024-sample FFT. We
implemented the Hann window as a product of two square roots
of a Hann window, one in frequency to synthesize modes using
few Fourier coefficients and the other in time to blend overlapping

frames [Zölzer 2002]. At 44.1kHz, we thus process and reconstruct
our signal using 512/44100 = 11msec-long frames.

4 Efficient Fourier-Domain Modal Synthesis

We provide some numerical evidence of our intuition, that most of
the energy of a modal sound is restricted to a few FFT bins around
the mode’s frequency. We constructed a small test scene, containing
12 objects with different masses and material properties. The scene
is shown in the accompanying video and in Fig. 6. We computed
the energy with the signal reconstructed using all 512 bins, then
progressively reconstruct with a small number of bins distributed
symmetrically around the mode’s frequency, and measured the er-
ror. We compute percent error averaged over all modes in the scene,
for 1 bin (containing the mode’s frequency), then 3 bins (i.e., to-
gether with the 2 neighboring bins on each side), then both these
together with the 2 next bins, etc. Using a single bin, we have
52.7% error in the reconstructed energy; with 3 bins the error drops
to 4.7% and with 5 bins the error is at 1.1%. We thus assume that
bins are sorted by decreasing energy in this manner, which is useful
for our scalable processing stage (see Sect. 5).

This property means that we should be able to reconstruct modal
sounds by mixing a very small number of frequency bins, without
significant numerical error; however, we need a way to compute the
STFT of modes efficiently.

One possible alternative would be to precompute and store the FFTs
of each mode and then weight them by their amplitude at runtime.
However, this approach would suffer from an unacceptably high
memory overhead and would thus be impractical. The STFT of a
mode sampled at 44.1kHz requires the storage of 86 frames of 512
complex values, representing 352 Kbytes per mode per second. A
typical scene of two thousand modes would thus require 688 Mb.

In what follows we use a formulation based on singular distribu-
tions or generalized functions [Hormander 1983], allowing us to
develop an efficient approximation of the STFTs of modes.

4.1 A Fast Short-time FFT Approximation for Modes

We want to estimate the short-time Fourier transform over a given
time-frame of a mode m(t) (Eq. 2), weighted by a windowing func-
tion that we will denote H(t) (e.g., a Hann window). We thus pro-
ceed to calculate the short time transform s(λ) where λ is the fre-
quency, and t0 is the offset of the window:

s(λ) = Fλ{ m(t + t0)H(t) }. (3)

The Fourier transform Fλ{ f (t) } that we used corresponds to the
definition:

Fλ{ f (t) }=
∫

∞

−∞

f (t) e−i λ tdt (4)

Note that the product in the time domain corresponds to the convo-
lution in the frequency domain (see Eq. 19 in the Appendix). We
can use a polynomial expansion (Taylor series) of the exponential
function:

eα(t+t0) = eαt0
∞

∑
n=0

cn(αt)n, (5)

where cn =1/n!. Next, the expression for the Fourier transform of
a power term is a distribution given by:

Fλ{ tn }= 2πinδ
(n)(λ), (6)

where δ is the Dirac distribution, and δ(n) its n’th derivative. From
Eqs. 5 and 6, we have the expression for the Fourier transform of



the exponential:

Fλ

{
eα(t+t0)

}
= eαt0

∞

∑
n=0

cnα
n2πinδ

(n)(λ). (7)

The Fourier transform of a sine wave is a distribution given by:

Fλ{ sin(ω(t + t0)) }= iπ
(

e−iωt0 δ(λ+ω)− eiωt0 δ(λ−ω)
)

. (8)

We also know that δ is the neutral element of the convolution (see
Eq. 17 in the Appendix). Moreover, we can convolve the distribu-
tions of the exponential and the sine since they both have compact
support. From Eqs. 7 and 8, we finally have:

Fλ{ m(t + t0) }= πeαt0
∞

∑
n=0

cnα
nin+1·(

e−iωt0 δ
(n)(λ+ω)− eiωt0 δ

(n)(λ−ω)
)

. (9)

Convolution of Eq. 9 with a windowing function H leads to the de-
sired short time Fourier transform of a mode. Using the properties
of distributions (Eq. 17, 18 in the Appendix), and Eq. 9, we have:

s(λ) =
1
2

eαt0
∞

∑
n=0

cnα
nin+1

(
e−iωt0 Fλ(H)(n)(λ+ω)− eiωt0 Fλ(H)(n)(λ−ω)

)
. (10)

Fλ(H)(n)(λ+ω) is the n-th derivative of the (complex) Fourier
transform of the window H, taken at the value (λ+ω).

Note that Eq. 9 is still a distribution, since we did not constrain the
mode to be computed only for positive times, and the mode itself
is not square-integrable for negative times. However, this distribu-
tion has compact support which makes the convolution of Eq. 10
possible [Hormander 1983].

For computational efficiency, we truncate the infinite sum of Eq. 10,
and approximate it by retaining only the first term. The final expres-
sion of our approximation to the mode STFT is thus:

s(λ)≈ 1
2

eαt0 c0i(
e−iωt0 Fλ(H)(λ+ω)− eiωt0 Fλ(H)(λ−ω)

)
. (11)

Instead of c0 = 1 (Eq. 5), we take c0 to be the value of the exponen-
tial minimizing

∫ t0+∆t
t0 (e−αt − c0)2dt, where ∆t is the duration of a

frame, resulting in a better piecewise constant approximation:

c0 =
e−αt0 − e−α(t0+∆t)

α ∆t
. (12)

This single term formula is computationally efficient since the
Fourier transform of the window can be precomputed and tabulated,
which is the only memory requirement. Moreover both complex ex-
ponentials are conjugate of each other meaning that we only need
to compute one sine and one cosine.

4.2 Speedup and Numerical Validation

Consider a scene requiring the synthesis of M modes. Using a
standard recursive time-domain solution [van den Doel and Pai
2003], and assuming 512-sample frames, the cost of the frame is
M × 512×Cmt . The cost Cmt of evaluating a mode in the time

domain is 5 or 6 multiplies and adds, using the recursive formula-
tion of Eq. 6 in [van den Doel and Pai 2003]. In our approach,
assuming an average of B bins per mode, the cost of a frame is
M ×B× CST FT plus the cost (once per frame) of the inverse FFT.
The cost CST FT of evaluating Eq. 11, is about 25 operations. With
a value of B = 3 (it is often lower in practice), we have a potential
theoretical speedup factor of 30-40 times. If we take into account
the fact that we have a 50% overlap due to windowing, this theoret-
ical speedup factor drops to 15-20 times.

We have used our previous test scene to measure the speedup of
our approach in practice, compared to [van den Doel and Pai 2003].
When using B = 3 bins per mode, we found an average speedup
of about 8, and with B = 5 bins per mode about 5. This reduction
compared to the theoretical speedup is probably due to compiler
and optimization issues of the two different algorithms.

Finally, we examine the error of our approximation for a single
sound. We tested two different windows, a Hann window with 50%
overlap and a Rectangular window with 10% inter-frame blending.
In Fig. 2 we show 3 frames, with the reference [van den Doel and
Pai 2003] in red and our approximation in blue, taking B = 5 bins
per mode.

Taken over a sequence including three impacts (a single pipe in the
Magnet scene, see Sect. 7), for a total duration of about 1 sec., the
average overall error for the Rectangular window is 15% with 5
bins, and 21% with 3 bins (it is 8% if we use all 512 bins). This
error is mainly due to small ringing artifacts and possibly to our
constant exponential approximation, which can be seen at frame
ends (see Fig. 2). Using the Hann window, we have 35-36% error
for both 512 and 5 bins, and 36% with 3 bins. This would indicate
that the error is mainly due to the choice of window. As can be
seen in the graph (Fig. 2 (right)) the error with the Hann window
is almost entirely in the first frame, at the onset, or “attack”, of the
sound for the first 512 samples (i.e., 11 msec at 44.1kHz). The
overall quality of the signal is thus preserved in most frames; in
contrast, the ringing due to the rectangular window can result in
audible artifacts. For this reason, and to be compatible with the
pipeline of [Moeck et al. 2007], we chose to use the Hann window.
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Figure 2: Comparison of Reference with Hann window and with
Rectangular window reconstruction using a 1024-tap FFT.

4.3 Limitations for the “Attacks” of Impact Sounds

Contrary to time domain approaches such as [van den Doel and Pai
2003; Raghuvanshi and Lin 2006], the use of the Hann window as
well as the constant exponential approximation (CEA) degrades the
onset or “attack” for high frequency modes. This attack is typically
contained in the first few frames, depending on decay rate.

To study the individual effect of each of the CEA and the Hann win-
dow in our reconstruction process, we computed a time-domain so-
lution using the CEA for the example of a falling box (Fig. 3(left))



and a time domain solution using a Hann window to reconstruct the
signal (Fig. 3(right)). We plot the time-domain reference [van den
Doel and Pai 2003] in red and the approximation in blue. As we can
see, most of the error in the first 7msec is due to the Hann window
whereas the CEA error remains lower. The effect of these approx-
imations is the suppression of the “crispness” of the attacks of the
impact sounds.

Use of the Hann window and the CEA as described previously has
the benefit of allowing seamless integration between recorded and
impact sounds, as described next in Sect. 5. In complex sound-
scapes containing many recorded sounds, this approximation may
be acceptable. However, in other cases the crispness of the attacks
of the modal sounds can be important.
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Figure 3: Comparison of Constant Exponential Approximation in
the time domain (TD) and Hann window reconstruction in the TD,
with the reference for the sharp sound of a falling box.

To better preserve the attacks of the impacts sounds, we treat them
in a separate buffer and split the first 1024-sample frame into four
subframes. Each subframe has a corresponding CEA and with a
specialized window. In what follows, we assume that all contact
sounds start at the beginning of a frame.

We design a windowing scheme satisfying four constraints: 1)
avoid “ramping up” to avoid smoothing the attack, 2) end with a
512 sample square root of Hann window to blend with the buffer
for all frames other than the attack, 3) achieve perfect reconstruc-
tion, i.e., all windows sum to one, 4) require a minimal number of
bins overall, i.e., use Hann windows which minimize the number of
bins required for reconstruction [Oppenheim et al. 1999].

The first subframe is synthesized using a rectangular window for the
first 128 samples (constraint 1) followed by half of a Hann window
(“semi-Hann” from now on) for the next 128 samples and zeros in
the remaining 768 samples; this is shown in blue in Fig. 4. The
next two subframes use full 256-sample Hann windows, starting at
samples 128 and 256 respectively (red and green in Fig. 4). The last
subframe is composed of a semi-Hann window from samples 384 to
512 and a square root of a semi-Hann window for the last 512 sam-
ples for correct overlap with the non-attack frames, thus satisfying
constraint 2 (black in Fig. 4). All windows sum to 1 (constraint
3), and Hann windows are used everywhere except for the first 128
samples (constraint 4). These four buffers are summed before per-
forming the inverse FFT, replacing the original 1024 sample frame
by the new combined frame. We use 15 bins in the first subframe.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Figure 4: Four sub-windows to better preserve the sound attack.

The increase in computational cost is negligible, since the addi-
tional operations are only performed in the first frame of each

mode: for the example shown in the video the additional cost of
the mixed window for attacks is 1.2%. However, the integration of
this method with recorded sounds is somewhat more involved; we
discuss this in Sect. 9.

5 A Full Perceptually Based Scalable Pipeline
for Modal and Recorded Sounds

An inherent advantage of frequency domain processing is that it
allows fine-grain scalable audio processing at the level of an FFT
bin. In [Tsingos 2005], such an approach was proposed to perform
equalization and mixing, reverberation processing and spatializa-
tion on prerecorded sounds. Signals are prioritized at runtime and a
number of frequency bins are allocated to each source, thus respect-
ing a predefined budget of operations. This importance sampling
strategy is driven by the energy of each source at each frame and
used to determine the cut-off point in the list of STFT coefficients.

Given our fast frequency-domain processing described above, we
can also use such an approach. In addition to the fast STFT synthe-
sis, we also require an estimation of energy, both of the entire im-
pact sound, and of each individual mode. In [Tsingos 2005] sounds
were pre-recorded, and the FFT bins were precomputed and pre-
sorted by decreasing energy.

For our scalable processing approach, we first fix an overall mix-
ing budget, e.g., 10,000 bins to be mixed per audio frame. At each
frame we compute the energy Es of each impact sound over the
frame and allocate a budget of frequency bins per sound propor-
tional to its energy. We compute the energy Em of each mode for
the entire duration of the sound once, at the time of each impact,
and we use this energy weighted by the mode’s squared amplitude
to proportionally allocate bins to modes within a sound. After ex-
perimenting with several values, we assign 5 bins to the 3 modes
with highest energy, 3 bins for the next 6 and 1 bin for all remaining
modes. We summarize these steps in the following pseudo-code.

1. PerImpactProcessing(ImpactSound S) // at impact notification
2. foreach mode of S
3. compute total energy Em
4. Sort modes of S by decreasing Em
5. Compute total energy of S for cutoff
6. Schedule S for processing

1. ScalableAudioProcessing() // called at each audio frame
2. foreach sound S
3. Compute Es
4. Allocate FFT bin budget based on Es
5. Modes m1, m2, m3 get 5 bins
6. Modes m4−m9 get 3 bins
7. 1 bin to remaining modes until end of budget
8. endfor

5.1 Efficient Energy Estimation

To allocate the computation budget for each impact sound, we need
to compute the energy, Es, of a modal sound s in a given frame, i.e.,
from time t to time t + ∆t:

Es =
∫ t + ∆t

t
s2(x)dx. (13)

From Eq. 1 and 2, we express Es as:

Es = < s,s > =
M

∑
i=0

M

∑
j=0

aia j < mi,m j > . (14)



For a given frame, the scalar product < mi,m j > has an analytic
expression (see Eq. 22 in the additional material). Because this
scalar product is symmetric, we only have to compute half of the
required operations.

In our experiments, we observed that most of the energy of an im-
pact sound is usually concentrated in a small number N of modes
(typically 3). To identify the N modes with highest energy, we com-
pute the total energy, Em, of each mode as:

Em =
∫

∞

0

(
sin(ωx)e−αx)2 dx =

1
4

ω2

α(α2 +ω2)
(15)

After computing the Em’s for each mode, we weight them by the
square of the mode’s amplitude. We then sort the modes by de-
creasing weighted energy. To evaluate Eq. 14 we only consider the
N modes with highest energy. We re-use the result of this sort for
budget allocation.

We also compute the total energy for a sound, which is used to
determine its duration, typically when 99% of the energy has been
played back. We use Eq. 14 and an expression for the total energy
(rather than over a frame), given in the additional material (Eq. 21).

Numerical Validation We use the test scene presented in Sect. 4.1
(Fig. 6) to perform numerical tests with appropriate values for N.
We evaluated the average error of the estimated energy, compared
to a full computation. Using 3 modes, for all objects in this scene,
the error is less than 9%; for 5 modes it falls to 4.9%.

5.2 A Complete Combined Audio Pipeline

In addition to frequency-domain scalable processing, we can also
use the perceptual masking and sound-source clustering approaches
developed in [Tsingos et al. 2004; Moeck et al. 2007]. We can thus
mix pre-recorded sounds, for which the STFT and energy have been
precomputed, with our frequency domain representation for modal
sounds and perform global budget allocation for all sounds. As a
result, masking between sounds is taken into account, and we can
cluster the surviving unmasked sources, thus optimizing the time
for per-sound source operations such as spatialization. In previ-
ous work, the masking power of a sound also depends on a tonal-
ity indicator describing whether the signal is closer to a tone or a
noise, noisier signals being stronger maskers. We computed tonal-
ity values using a spectral flatness measure [Tsingos et al. 2004] for
several modal sounds and obtained an average of 0.7. We use this
constant value for all modal sounds in our masking pipeline.

6 Temporal Scheduling

One problem with systems simulating impact sounds is that a large
number of events may happen in a very short time interval (debris
from an explosion, a collapsing pile of objects, etc.), typically dur-
ing a single frame of the physics simulation. As a result, all sounds
will be triggered simultaneously resulting in a large peak in system
load and possible artifacts in the audio (“cracks”) or lower audio
quality overall. Our idea is to spread out the peaks over time, ex-
ploiting results on audio-visual human perception.

As mentioned in Sect. 2, there has been extensive study of audio-
visual asynchrony in neuroscience which indicates that the brain is
able to compensate for the different delays between an auditory and
a visual event in causal inference. To exploit this property, we in-
troduce a scheduling step at the beginning of the treatment of each
audio frame. In particular, we maintain a list of sound events pro-
posed by the physics engine (which we call TempSoundsList) and a
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Figure 5: Effect of temporal scheduling; computational peaks are
delayed, the slope of increase in computation time is smoothed out
and the duration of peaks is reduced. Data for the Magnet se-
quence, starting just before the group of objects hits the floor.

list of sounds currently processed by the audio engine (CurrSound-
sList). At the beginning of each audio frame, we traverse Temp-
SoundsList and add up to 20 new sounds to CurrSoundsList if one
of the following is true:

• CurrSoundsList contains less than 50 sounds

• Sound s has been in TempSoundsList for more than T msec.

The values 20 and 50 were empirically chosen after experimenta-
tion. We use our perceptual tolerance to audio-visual asynchrony
by manipulating the threshold value T for each sound. In particular
we set T to a desired value, for example 200 msec corresponding
to the results of [Guski and Troje 2003]. We then further modulate
T for sounds which are outside the visible frustum; T is increased
progressively as the direction of the sound is further from the center
of the field of view. For sounds completely behind the viewer the
delay T is set to a maximum of 0.5 seconds. Temporal scheduling
only occurs for impact sounds, and not for recorded sounds such as
a gun firing which are time-critical and can have a remote effect.

Our approach reduces the number and density of computational
peaks over time. Although some peaks still occur, they tend to be
smaller and/or sharper, i.e., occur over a single frame (see Fig. 5).
Since our interactive system uses buffered audio output, it can sus-
tain such sparse peaks over a single frame, while it could not sustain
such a computational overload over several consecutive frames.

7 Implementation and Results

Our system is built on the Ogre3D1 game engine, and uses the
PhysX 2 real-time physics engine simulator. Throughout this pa-
per, we use our own (re-)implementations of [van den Doel and
Pai 2003], [O’Brien et al. 2002] and [Raghuvanshi and Lin 2006].
For [van den Doel and Pai 2003], we use T = 512 samples at
44.1KHz; the size of the impact filter with a force profile of
cos(2πt/T ) is T = 0.37ms or 16 samples (Eq.17 of that paper).

For objects generating impact sounds, we precompute modes using
the method of O’Brien et al. [2002]. Sound radiation amplitudes
of each mode are estimated with a far-field radiation model (Eq.
15, [James et al. 2006]).

Audio processing was performed using our in-house audio engine,
with appropriate links between the graphics and audio. The audio

1http://www.ogre3d.org
2http://www.ageia.com



engine is described in detail in [Moeck et al. 2007]. In total we run
three separate threads: one for each of the physics engine, graphics
and audio. All timings are reported on a dual-processor, dual-core
Xeon running at 2.3Ghz.

7.1 Interactive Sessions Using the Pipeline

We have constructed four main scenes for demonstration purposes,
which we refer to as “Oriental”, “Magnet”, “Truck” and “Boxes”;
we show snapshots of each in Fig. 1 (Truck and Oriental) and 6.
The goal was to construct environments which are similar to typical
simulators or games settings, and which include a large number of
impact sounds, as well as several prerecorded sounds. All sounds
were processed in the Fourier-domain at 44.1kHz using 1024-tap
FFTs and 50% overlap-add reconstruction with Hann windowing.
The “Oriental” and “Box” scenes contain modal sounds only and
thus use the attack preserving approach (Sect. 4.3). Hence, our
audio thread runs at 83Hz; we then output reconstructed audio
frames of 512 samples. The physics thread updates object motion
at 140Hz, and the video thread runs at between 30-60Hz depending
on the scene and the rendering quality (shadows, etc.).

The Magnet scene contains prerecorded industrial machinery and
closing door sounds, while the Truck scene contains traffic and he-
licopter sounds. Basic scene statistics are given in Table 1, for the
demo versions of the scenes shown in the video.

Scene O T P Mi M/o
Oriental 173 730K 0 665 214
Boxes 200 200K 0 678 376
Magnet 110 300K 16 971 164
Truck 214 600K 15 268 221

Table 1: Basic statistics for example scenes. O: number of objects
simulated by the physics engine producing contact sounds, T : total
number of triangles in the scene, P: number of pre-recorded sounds
in the scene and Mi: maximum number of impact sounds played per
frame. M/o: average number of modes/object.

7.2 Quality and Performance

We performed two comparisons for our fast modal synthesis: the
first was with the “standard” time-domain (TD) method of [van den
Doel and Pai 2003] using recursive evaluation, and the second with
the mode-culling time-domain approach of [Raghuvanshi and Lin
2006], which is the fastest TD method to date. We used the “Orien-
tal” scene for this comparison, containing only modal sounds.

Comparison to “standard” TD synthesis In terms of quality, we
tested examples of our frequency-domain synthesis with 3 and 5
bins per mode, together with a time-domain reference, shown in the
accompanying video. The quality for 5 bins is very close to the ref-
erence. The observed speedup was 5-8 times, compared to [van den
Doel and Pai 2003].

Comparison to mode-culling TD synthesis To compare to mode-
culling, we apply the mode truncation and quality scaling stages
of [Raghuvanshi and Lin 2006] at each audio frame. We then per-
form fast frequency domain synthesis for the modes which have not
been culled. For the same mode budget our frequency processing
allows a speedup of 4-8 times; the difference in speedup with the
“standard” TD synthesis is due to implementation issues. The qual-
ity of the two approaches is slightly different for the same mode
budget, but in both cases subjectively gives satisfactory results.

Scene Total Mixing Energy Masking Clustering
Magnet 3.2 1.3 0.6 1.0 0.3
Truck 2.7 1.5 0.9 0.3 0.1

Table 2: Cost in milliseconds of each stage of our full pipeline.

Full Combined Pipeline The above comparisons are restricted to
modal sounds only. We also present results for other scenes, aug-
mented with recorded sounds. These are rendered using our full
pipeline, at low overall budgets but with satisfactory quality.

We present statistics for our approach in Table 2, using a budget
of 8000 bins. First we indicate the cost (in milliseconds) of each
component of our new combined pipeline: mixing, energy com-
putation, masking and clustering, as well as the total cost. As we
can see there is a non-negligible overhead of the pipeline stages;
however the benefit of being able to globally allocate budget across
modal and recorded sounds, and of course all the perceptually based
accelerations, justifies this cost.

The number of sounds at each frame over the course of the interac-
tive sequences shown in the video varied between 195 and 970. If
no masking or culling were applied there would be between 30,000
to 100,000 modes to be played per audio frame on average in these
sequences. We use 15,000 to 20,000 frequency bins in all inter-
active sessions. The percentage of prerecorded sounds masked was
around 50% on average and that of impact sounds was around 30%.

8 Pilot Perceptual Evaluation

Despite previous experimental studies for perceptually based au-
dio rendering for pre-recorded sounds [Moeck et al. 2007; Tsingos
et al. 2004], and the original neuroscience experiments for asyn-
chrony [Guski and Troje 2003], we consider it imperative to con-
duct our own pilot study, since our context is very different. We
have two conditions in our experiment: the goal of the first condi-
tion is to evaluate the overall audio quality of our approximations
while that of the second is to evaluate our temporal scheduling.

8.1 Experiment Setup and Procedure

In our experiment we used the Magnet and Truck (Sect. 7) environ-
ments, but with fewer objects, to avoid making the task too hard for
the subjects. We used two 6 second pre-recorded paths for each of
the two scenes. To ensure that all the stimuli represent the exact
same sequence of events and to allow the presentation of a refer-
ence in real-time, we synchronize all threads and store the output
audio and video frames of our application to disk. Evidently any
other delay in the system has to be taken into account. We choose
the parameters of our simulation to be such that we do not perceive
“cracks” in the audio when running interactively with the same bud-
get settings. Video sequences are then played back during the study.
For the reference sequences, all contact sounds are computed in the
time-domain and no perceptual processing is applied when mix-
ing with the recorded sounds in the frequency domain. We use
non-individualized binaural rendering using Head Related Transfer
Functions (HRTFs) chosen from the Listen database3.

The interface is a MUSHRA-like [ITU 2001-2003] slider panel (see
the accompanying video), in which the user can choose between a
reference and five different approximations (A, B, C, D, E), each
with a different budget of frequency bins. The subject uses a slider
to rate the quality of each stimulus. One of the five stimuli is a
hidden reference. The radio button above each slider allows the

3http://recherche.ircam.fr/equipes/salles/listen/



Figure 6: From left to right, snapshots of the large Magnet scene, the Boxes scene, the test scene used for numerical validation and our
prototype rolling demo. Please see and listen to the accompanying video showing these scenes.

Budget FFT bins Audio Delay (msec)
Scene C1 C2 C3 C4 T1 T2 T3 T4

Magnet 700 1.5K 2.5K 4K 0 120 200 400
Truck 1K 2K 4K 8K 0 120 200 400

Table 3: Budget and delay values used for the perceptual experi-
ments. Ci and Ti are the budget and delay conditions used.

Percent Perceived Quality % Perceived Asynchrony
Scene C1 C2 C3 C4 Re f T1 T2 T3 T4

Magnet1 51.1 64.7 78.0 83.1 84.9 0 24 48 71
Magnet2 48.8 70.1 76.5 85.2 88.9 10 5 0 10
Truck1 26.3 41.8 54.2 66.0 87.3 24 24 14 38
Truck2 24.8 28.6 42.7 66.0 89.0 14 14 38 29

Table 4: Results of our experiments: average quality and percent
perceived asynchrony for the 2 scenes and 2 paths.

subject to (re)start the corresponding sequence. For the synchro-
nization condition, we choose one budget which has a good rating
in the quality condition (typically C3 in Table 3), and delay the au-
dio relative to graphics by a variable threshold T . The budgets and
thresholds used are shown in Table 3. A tick box is added under
each sound for synchrony judgment. The experiment interface can
be seen in the accompanying video.

The subject listens to the audio with headphones and is instructed to
attend to both visuals and audio. There are 8 panels, corresponding
to all the conditions; stimuli are presented in random order. De-
tailed instructions are given on screen to the user, who is asked to
rate the quality and tick if asynchrony between audio and visuals
is detected. Rating of each panel is limited to 3 minutes, at which
point rating is disabled.

8.2 Analysis of the Experiments

We ran the experiment with 21 subjects who were members of our
research institutes, and were all naive about the goal of our exper-
iments. We show the average quality ratings and the percent per-
ceived asynchrony averages for the experiment in Table 4.

As we can see, for the Magnet scene, the budget of 4,000 bins
was sufficient to give quality ratings of 83-85% very close to
the hidden reference rated at 84-89%. An analysis of variance
(ANOVA) [Howell 1992] with repeated measures on quality ratings
shows a main effect of budget on perceived quality (F(4,20)=84.8,
p<0.00001). For the Truck scene the quality rating for 8,000 bins
was lower. This is possibly due to the fact that the recorded sounds
require a significant part of the frequency bin budget, and as a result
lower the overall perceived quality.

In terms of asynchrony, the results have high variance. However, it

is clear that audiovisual asynchrony was perceived less than 25% of
the time, for delays under 200msec.

Overall, we consider these results to be a satisfactory indication that
our approximations work well both in terms of progressive pro-
cessing and for our temporal scheduling algorithm. In particular,
there is a strong indication that increasing the budget does result
in perceptually improved sounds, and that only a small percentage
of users perceive asynchrony with temporal scheduling with delays
less than 200ms.

9 Discussion and Conclusions

We have presented a new frequency-domain approach to modal
sound rendering, which exploits sparseness of the Fourier Trans-
form of modal sounds, leading to an 4-8 speedup compared to
time-domain approaches [van den Doel and Pai 2003; Raghuvan-
shi and Lin 2006], with slight quality degradation. Furthermore,
our approach allows us to introduce a combined perceptual audio
pipeline, treating both prerecorded and on-the-fly impact sounds,
and exploiting scalable processing, auditory masking, and cluster-
ing of sound sources. We used crossmodal results on perception
of audiovisual synchronization to smooth out computational peaks
which are frequently caused by impact sounds, and we performed a
pilot perceptual study to evaluate our combined pipeline.

Use of the Hann window allows direct integration of modal and
recorded sounds (see Sect. 5), but leads to lower quality attacks
of impact sounds. We have developed a solution to this problem,
splitting the treatment of the first frame of each attack into four sub-
frames with appropriate windows. This solution can be easily used
in scenes exclusively containing modal sounds. For the pipeline
combining recorded and modal sounds, and in particular for clus-
tering, we would need a separate buffer for attacks in each cluster
thus performing twice as much post-processing (HRTF processing
etc.). The rest of the pipeline would remain unchanged.

We developed an initial solution for rolling sounds in our pipeline,
using a noise-like sound profile, similar in spirit to [van den Doel
et al. 2001]. To simulate the continuous rolling excitation, we pre-
compute a noise profile in the Fourier domain, and perform dy-
namic low-pass filtering based on velocity. Convolution with the
excitation is a simple product in the Fourier domain, making our
approach efficient. The accompanying video contains a first exam-
ple. Nonetheless, a general solution to continuous excitation in our
framework requires mixing delayed copies of past frames, incurring
additional costs. We expect masking and progressive processing to
limit this overhead, similar to the reverberation in [Tsingos 2005].

Another limitation is the overhead of our pipeline which is not neg-
ligible. For practical usage of real-time audio rendering, such as
game engines, we believe that the benefits outweigh this drawback.
In addition to the perceptually based accelerations, we believe that



the ability to treat recorded and synthesized sounds in a unified
manner is very important for practical applications such as games.

Currently, when reducing the budget very aggressively the energy
computation can become a dominant cost. It is possible to pre-
compute a restricted version of the energy, if we assume that forces
are always applied in the normal direction. This is the case for
recording-based systems (e.g., [van den Doel and Pai 1998]). How-
ever, this reduces the flexibility of the system.
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Appendix

A.1 Some Elements of Distribution Theory

Applying a distribution T to a smooth test function with local sup-
port f , implies the following operation:

< T, f >=
∫

∞

−∞

T f (x)dx. (16)

A commonly used distribution is the Dirac distribution (note that
this is not the Kronecker delta) which has value 0 everywhere, ex-
cept at 0. < δk, f >= f (k) is commonly used in signal processing
(Dirac combs). We use the following properties of distributions:

δ0 ? f = f δ
(n)
0 ? f = f (n) (17)

where f (n) denotes the nth derivative of f .

δa(t)? f (t) = f (t−a) δ
(n)
a (t)? f (t) = f (n)(t−a) (18)

F ( f (t)g(t)) =
1

2π
F ( f (t))?F (g(t)) (19)




