8,564 research outputs found

    X-ray ptychography on low-dimensional hard-condensed matter materials

    Get PDF
    Tailoring structural, chemical, and electronic (dis-)order in heterogeneous media is one of the transformative opportunities to enable new functionalities and sciences in energy and quantum materials. This endeavor requires elemental, chemical, and magnetic sensitivities at the nano/atomic scale in two- and three-dimensional space. Soft X-ray radiation and hard X-ray radiation provided by synchrotron facilities have emerged as standard characterization probes owing to their inherent element-specificity and high intensity. One of the most promising methods in view of sensitivity and spatial resolution is coherent diffraction imaging, namely, X-ray ptychography, which is envisioned to take on the dominance of electron imaging techniques offering with atomic resolution in the age of diffraction limited light sources. In this review, we discuss the current research examples of far-field diffraction-based X-ray ptychography on two-dimensional and three-dimensional semiconductors, ferroelectrics, and ferromagnets and their blooming future as a mainstream tool for materials sciences

    Atomic Parity Non-Conservation, Neutron Radii, and Effective Field Theories of Nuclei

    Get PDF
    Accurately calibrated effective field theories are used to compute atomic parity non-conserving (APNC) observables. Although accurately calibrated, these effective field theories predict a large spread in the neutron skin of heavy nuclei. While the neutron skin is strongly correlated to a large number of physical observables, in this contribution we focus on its impact on new physics through APNC observables. The addition of an isoscalar-isovector coupling constant to the effective Lagrangian generates a wide range of values for the neutron skin of heavy nuclei without compromising the success of the model in reproducing well constrained nuclear observables. Earlier studies have suggested that the use of isotopic ratios of APNC observables may eliminate their sensitivity to atomic structure. This leaves nuclear structure uncertainties as the main impediment for identifying physics beyond the standard model. We establish that uncertainties in the neutron skin of heavy nuclei are at present too large to measure isotopic ratios to better than the 0.1% accuracy required to test the standard model. However, we argue that such uncertainties will be significantly reduced by the upcoming measurement of the neutron radius in 208Pb at the Jefferson Laboratory.Comment: 24 pages, 6 figures, revtex4; one figure adde

    The quark orbital angular momentum from Wigner distributions and light-cone wave functions

    Get PDF
    We investigate the quark orbital angular momentum of the nucleon in the absence of gauge-field degrees of freedom, by using the concept of the Wigner distribution and the light-cone wave functions of the Fock state expansion of the nucleon. The quark orbital angular momentum is obtained from the phase-space average of the orbital angular momentum operator weighted with the Wigner distribution of unpolarized quarks in a longitudinally polarized nucleon. We also derive the light-cone wave function representation of the orbital angular momentum. In particular, we perform an expansion in the nucleon Fock state space and decompose the orbital angular momentum into the NN-parton state contributions. Explicit expressions are presented in terms of the light-cone wave functions of the three-quark Fock state. Numerical results for the up and down quark orbital angular momenta of the proton are shown in the light-cone constituent quark model and the light-cone chiral quark-soliton model.Comment: 26 pages, 4 figure

    Effect of low-Raman window position on correlated photon-pair generation in a chalcogenide Ge11.5As24Se64.5 nanowire

    Get PDF
    We investigated correlated photon-pair generation via spontaneous four-wave mixing in an integrated chalcogenideGe11.5As24Se64.5photonicnanowire. The coincidence to accidental ratio, a key measurement for the quality of correlated photon-pair sources, was measured to be only 0.4 when the photon pairs were generated at 1.9 THz detuning from the pump frequency due to high spontaneous Raman noise in this regime. However, the existence of a characteristic low-Raman window at around 5.1 THz in this material's Raman spectrum and dispersion engineering of the nanowire allowed us to generate photon pairs with a coincidence to accidental ratio of 4.5, more than 10 times higher than the 1.9 THz case. Through comparing the results with those achieved in chalcogenide As2S3waveguides which also exhibit a low Raman-window but at a larger detuning of 7.4 THz, we find that the position of the characteristic low-Raman window plays an important role on reducing spontaneous Raman noise because the phonon population is higher at smaller detuning. Therefore the ultimate solution for Raman noise reduction in Ge11.5As24Se64.5 is to generate photon pairs outside the Raman gain band at more than 10 THz detuning

    Phase locked-loop with decaying DC transient removal for three-phase grids

    Get PDF
    Frequency and phase of the power grid, which are critical for reliable control and protection of grid-tied devices, are generally detected by the closed-loop phase locked-loop (PLL). In highly inductive high-voltage transmission systems, decaying DC (DDC) components with large amplitude can be easily introduced by load disturbances and/or grid abnormalities, leading to severe performance degradation of the PLL during the transient. Focusing on this issue, in this paper, modifications to the conventional synchronous reference frame (SRF)-PLL have been made to address the short-term disturbances including the DDC component, and the system operation is divided into the normal state and the DDC-transient state. The SRF-PLL is only adopted for the normal state where the DDC component is negligible. In the presence of a significant DDC component, as well as disturbances including negative-/zero-sequence components and harmonics, the weak effectiveness of the conventional SRF-PLL is proved, and an efficient DDC component extraction method, with a detection time of 0.5 grid cycle, is introduced for the three-phase system. The real-time amplitude and phase of the positive-sequence component can be efficiently extracted via the proposed scheme, by exploiting the transient signal properties in the dq-frame and assuming a constant grid frequency during the short transient. Finally, a proper design of switching logic has been proposed to allow for the fast and precise transition between the normal and the DDC-transient state, thereby ensuring high steady-state accuracy as well as short-term DDC transient immunity. Hardware-in-the-loop based experiments have been used to verify the effectiveness of the proposed PLL technique

    Effects of tai chi on postural control during dual-task stair negotiation in knee osteoarthritis : a randomised controlled trial protocol

    Get PDF
    Stair ascent and descent require complex integration between sensory and motor systems; individuals with knee osteoarthritis (KOA) have an elevated risk for falls and fall injuries, which may be in part due to poor dynamic postural control during locomotion. Tai chi exercise has been shown to reduce fall risks in the ageing population and is recommended as one of the non-pharmocological therapies for people with KOA. However, neuromuscular mechanisms underlying the benefits of tai chi for persons with KOA are not clearly understood. Postural control deficits in performing a primary motor task may be more pronounced when required to simultaneously attend to a cognitive task. This single-blind, parallel design randomised controlled trial (RCT) aims to evaluate the effects of a 12-week tai chi programme versus balance and postural control training on neuromechanical characteristics during dual-task stair negotiation. Sixty-six participants with KOA will be randomised into either tai chi or balance and postural control training, each at 60 min per session, twice weekly for 12 weeks. Assessed at baseline and 12 weeks (ie, postintervention), the primary outcomes are attention cost and dynamic postural stability during dual-task stair negotiation. Secondary outcomes include balance and proprioception, foot clearances, self-reported symptoms and function. A telephone follow-up to assess symptoms and function will be conducted at 20 weeks. The findings will help determine whether tai chi is beneficial on dynamic stability and in reducing fall risks in older adults with KOA patients in community. Ethics approval was obtained from the Ethics Committee of the Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine (#2018KY-006-1). Study findings will be disseminated through presentations at scientific conferences or publications in peer-reviewed journals. ChiCTR1800018028. [Abstract copyright: © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

    Unified nonequilibrium dynamical theory for exchange bias and training effects

    Full text link
    We investigate the exchange bias and training effects in the FM/AF heterostructures using a unified Monte Carlo dynamical approach. This real dynamical method has been proved reliable and effective in simulating dynamical magnetization of nanoscale magnetic systems. The magnetization of the uncompensated AF layer is still open after the first field cycling is finished. Our simulated results show obvious shift of hysteresis loops (exchange bias) and cycling dependence of exchange bias (training effect) when the temperature is below 45 K. The exchange bias fields decrease with decreasing the cooling rate or increasing the temperature and the number of the field cycling. With the simulations, we show the exchange bias can be manipulated by controlling the cooling rate, the distributive width of the anisotropy energy, or the magnetic coupling constants. Essentially, these two effects can be explained on the basis of the microscopical coexistence of both reversible and irreversible moment reversals of the AF domains. Our simulated results are useful to really understand the magnetization dynamics of such magnetic heterostructures. This unified nonequilibrium dynamical method should be applicable to other exchange bias systems.Comment: Chin. Phys. B, in pres

    Detection of human papillomavirus (HPV) from super resolution microscopic images applying an explainable deep learning network

    Get PDF
    Human papillomavirus (HPV) remains a leading cause of virus-induced cancers. Hence early detection of HPV plays a crucial role in providing timely, optimal and effective intervention before such a cancer develops. While conventional light microscopy constitutes one of inseparable tools applied for studying biological cell structures, its low resolution at ~100nm per pixel falls short of detecting HPV that typically has a size of 52 to 55nm in diameter, giving rise to visualisation of HPV and subsequent evaluation of the efficacy of anti-HPV drugs at such sub-pixel level a challenging task if not overwhelmingly. This study employs an explainable deep learning network of texture transformer (TTSR) to up sample by four folds (×4). In comparison with other super resolution approaches, TTSR appears to perform the best with PSNR and SSIM being 28.70 and 0.8778 respectively whereas 25.80/0.7910, 18.35/0.5059. 30.31/0.8013, and 28.07/0.6074 are observed for the methods of RCAN, Pix2Pix, CycleGAN, and ESRGAN respectively. Significantly, the training pairs of TTSR does not need to be precisely match between low (LR) and high resolution (HR) images since the LR and HR images, which are required by many other super resolution approaches. This work constitutes one of the first to detect HPV applying explainable deep learning network, which will lead to the real world implementation to evaluate the efficacy of the developed anti-HPV drugs

    Evaluation of GAN architectures for visualisation of HPV viruses from microscopic images

    Get PDF
    Human papillomavirus (HPV) remains a leading cause of virus-induced cancers and has a typical size of 52 to 55nm in diameter. Hence conventional light microscopy that usually sustains a resolution at ~100nm per pixel falls short of detecting it. This study explores four state of the art generative adversarial networks (GANs) for visualising HPV. The evaluation is achieved by counting the HPV clusters that are corrected identified as well as drug treated cultured cells, i.e. no HPVs. The average sensitivity and specificity are 78.81%, 76.37%, 76.62% and 84.71% for CycleGAN, Pix2pix, ESRGAN and Pix2pixHD respectively. For ESRGAN, the training takes place by matching pairs between low and high resolution (x4) images. For the other three networks, the translation is performed from original raw images to their coloured maps that have undertaken Gaussian filtering in order to discern HPV clusters visually. Pix2pixHD appears to perform the best

    Signal denoising and viral particle identification in wide-field photon scattering parametric images using deep learning

    Get PDF
    Polarization parametric indirect microscopic imaging (PIMI) can obtain anisotropic nanoscale structural information of the sample by utilizing a polarization modulated illumination scheme and fitting the far-field variation of polarization states of the scattered photons. The rich scattering information of PIMI images can be exploited for identification of viral particles, aiming for early infection screening of viruses. Accurate processing and analysis of PIMI results is an important part of obtaining structural feature information of virus. Under noisy conditions, however, manually identifying viral particles in PIMI images is a very time-consuming process with a high error rate. The systematic noise degrading the image resolution and contrast are mainly due to the mechanical or electrical disturbance from the modulation of the illumination when taking raw images. To achieve efficient noise suppressing and accurate virus identification in PIMI images, we developed a neural network-based framework of algorithms. Firstly, a fairly effective denoising method particularly for PIMI imaging was proposed based on a generative network. Both the numerical and experimental results show that the developed method has the best capability of noise removal for PIMI images compared with the traditional denoising algorithms. Secondly, we use a convolutional neural network to detect and recognize viral particles in PIMI images. The experimental results show that viral particles can be identified in PIMI images with high accuracy
    • …
    corecore