20,932 research outputs found

    A new class of (2+1)(2+1)-d topological superconductor with Z8\mathbb{Z}_8 topological classification

    Full text link
    The classification of topological states of matter depends on spatial dimension and symmetry class. For non-interacting topological insulators and superconductors the topological classification is obtained systematically and nontrivial topological insulators are classified by either integer or Z2Z_2. The classification of interacting topological states of matter is much more complicated and only special cases are understood. In this paper we study a new class of topological superconductors in (2+1)(2+1) dimensions which has time-reversal symmetry and a Z2\mathbb{Z}_2 spin conservation symmetry. We demonstrate that the superconductors in this class is classified by Z8\mathbb{Z}_8 when electron interaction is considered, while the classification is Z\mathbb{Z} without interaction.Comment: 5 pages main text and 3 pages appendix. 1 figur

    Efficient electronic entanglement concentration assisted with single mobile electron

    Full text link
    We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.Comment: 6pages, 3figure

    Two-dimensional Superconductivity from Dimerization of Atomically Ordered AuTe2Se4/3 Cubes

    Full text link
    The emergent phenomena such as superconductivity and topological phase transitions can be observed in strict two-dimensional crystalline matters. Artificial interfaces and one atomic thickness layers are typical 2D materials of this kind. Although having 2D characters, most bulky layered compounds, however, do not possess these striking properties. Here, we report the 2D superconductivity in bulky AuTe2Se4/3,where the reduction in dimensionality is achieved through inducing the elongated covalent Te-Te bonds. The atomic-resolution images reveal that the Au, Te and Se are atomically ordered in a cube, among which are Te-Te bonds of 3.18 A and 3.28 A. The superconductivity at 2.85 K is discovered, which is unraveled to be the quasi-2D nature owing to the BKT topological transition. The nesting of nearly parallel Fermi sheets could give rise to strong electron-phonon coupling. It is proposed to further depleting the thickness could result in more topologically-related phenomena.Comment: 16 pages, 5 figures,To be published in Nature Communication

    Cloning and heterologous expression of the plasmidencoded shsp gene of Streptococcus thermophilus isolated from Chinese dairy

    Get PDF
    We first tested 12 strains of Streptococcus thermophilus isolated from China yogurt or its starter culture for their plasmid content. Two strains were found to harbor two plasmids, identified as pQC1 and pQC2, from the S. thermophilus ST-QC, as well as pHS1 and pHS2 from the S. thermophilus ST-HS. Agarose gel electrophoresis profiles indicated that the molecular size of about 4.5 kb for the two bigger plasmids (pQC1 and pHS1) was nearly identical, same with the molecular size of approximately 3.5 kb for the two smaller plasmids (pQC2 and pHS2). A 765 bp DNA fragment, including a 429 bp open reading frame of the shsp gene of the smaller plasmid pQC2 from S. thermophilus St-QC, was successfully cloned and sequenced. Multiple sequence alignment revealed that the nucleotide sequence of the coding region of the shsp gene or the deduced amino acid sequence of the sHSP protein shared a high degree of identity (> 86.67 or 81.33% identity) with the shsp genes or the sHSP proteins described from other S. thermophilus plasmids. In addition, 222 bp nucleotide sequences upstream and 114 bp nucleotide sequences downstream belonging to the shsp gene coding region were also analyzed. The separation of SDS-PAGE and the analysis of Western blotting for the soluble cell proteins showed that the shsp gene of plasmid pQC2 of S. thermophilus St-QC was  successfully expressed in mesophilic Escherichia coli. In addition to strong heat and acid tolerance, recombinant E. coli cells overexpressing the S. thermophilus St-QC shsp gene had significantly higher resistance to ethanol stress, which is the first physiological function found to be linked to the S. thermophilus plasmid-borne shsp gene. This study will provide a basis for the cloning and expression of the shsp genes from a thermophilic microorganism in the mesophilic LAB or yeast and for further development of stress-resistant microorganism strains used in dairy fermentation and brewing wine.Key words: Streptococcus thermophilus, plasmid, small heat shock protein gene (shsp gene), cloning, expression, abiotic stresses, Escherichia coli

    The Properties of H{\alpha} Emission-Line Galaxies at z = 2.24

    Full text link
    Using deep narrow-band H2S1H_2S1 and KsK_{s}-band imaging data obtained with CFHT/WIRCam, we identify a sample of 56 Hα\alpha emission-line galaxies (ELGs) at z=2.24z=2.24 with the 5σ\sigma depths of H2S1=22.8H_2S1=22.8 and Ks=24.8K_{s}=24.8 (AB) over 383 arcmin2^{2} area in the ECDFS. A detailed analysis is carried out with existing multi-wavelength data in this field. Three of the 56 Hα\alpha ELGs are detected in Chandra 4 Ms X-ray observation and two of them are classified as AGNs. The rest-frame UV and optical morphologies revealed by HST/ACS and WFC3 deep images show that nearly half of the Hα\alpha ELGs are either merging systems or with a close companion, indicating that the merging/interacting processes play a key role in regulating star formation at cosmic epoch z=2-3; About 14% are too faint to be resolved in the rest-frame UV morphology due to high dust extinction. We estimate dust extinction from SEDs. We find that dust extinction is generally correlated with Hα\alpha luminosity and stellar mass (SM). Our results suggest that Hα\alpha ELGs are representative of star-forming galaxies (SFGs). Applying extinction correction for individual objects, we examine the intrinsic Hα\alpha luminosity function (LF) at z=2.24z=2.24, obtaining a best-fit Schechter function characterized by a faint-end slope of α=−1.3\alpha=-1.3. This is shallower than the typical slope of α∼−1.6\alpha \sim -1.6 in previous works based on constant extinction correction. We demonstrate that this difference is mainly due to the different extinction corrections. The proper extinction correction is thus key to recovering the intrinsic LF as the extinction globally increases with Hα\alpha luminosity. Moreover, we find that our Hα\alpha LF mirrors the SM function of SFGs at the same cosmic epoch. This finding indeed reflects the tight correlation between SFR and SM for the SFGs, i.e., the so-called main sequence.Comment: 15 pages, 12 figures, 2 tables, Received 2013 October 11; accepted 2014 February 13; published 2014 March 18 by Ap

    Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere

    Get PDF
    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH)

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning

    Initial estimate of NOAA-9 SBUV/2 total ozone drift: Based on comparison with re-calibrated TOMS measurements and pair justification of SBUV/2

    Get PDF
    Newly recalibrated version 6 Total Ozone Mapping Spectrometer (TOMS) data are used as a reference measurement in a comparison of monthly means of total ozone in 10 degree latitude zones from SBUV/2 and the nadir measurements from TOMS. These comparisons indicate a roughly linear long-term drift in SBUV/2 total ozone relative to TOMS of about 2.5 Dobson units per year at the equator over the first three years of SBUV/2. The pari justification technique is also applied to the SBUV/2 measurements in a manner similar to that used for SBUV and TOMS. The higher solar zenith angles associated with the afternoon orbit of NOAA-9 and the large changes in solar zenith angle associated with its changing equator crossing time degrade the accuracy of the pair justification method relative to its application to SBUV and TOMS, but the results are consistent with the SBUV/2-TOMS comparisons, and show a roughly linear drift in SBUV/2 of 2.5 to 4.5 Dobson units per year in equatorial ozone

    Both improvements of the light extraction efficiency and scattered angle of GaN-LED using sub-micron Fresnel lens array

    Get PDF
    With the demanding requirements for light source, light emitting diodes (LED) attracts more and more attention because of its inherent advantages such as low power consumption, high reliability and longevity. However, there are two disadvantages for LED, one is the low light extraction efficiency resulting from the total internal reflection, and the other is the relative large scattered angle. In order to improve the light extraction efficiency and collimate the out-coupling light, a sub-micron Fresnel lens array is introduced and investigated in this paper. The focal length of the proposed Fresnel lens is 3μm and the minimum width of the outmost ring is about 150nm. To calculate and analyze the light extraction efficiency and the scattered angle of LED with such Fresnel lens array structure, we optimize the parameters of the Fresnel lens, such as the depth of the Fresnel lens array structure and the thickness of the p-type gallium nitride layer by using the finite difference time domain method (FDTD). By comparing the discussed patterned GaN-based LED with that traditional flat LEDs, it can be found that significant enhancement factor of the light extraction efficiency, which is improved by 3.5 times, can be obtained and the scattered angle at half maximum can be decreased 50° from 60° with this novel Fresnel lens structure. It will be expected that the proposed sub-micron structure can find wide applications in LEDs industry. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    • …
    corecore