7,041 research outputs found

    Priority-driven self-optimizing power control scheme for interlinking converters of hybrid AC/DC microgrid clusters in decentralized manner

    Get PDF
    Hybrid AC/DC microgrid clusters are key building blocks of smart grid to support sustainable and resilient urban power systems. In microgrid clusters, the subgrid load-priorities and power quality requirements for different areas vary significantly. To realize optimal power exchanges among microgrid clusters, this paper proposes a decentralized self-optimizing power control scheme for interlinking converters (ILC) of hybrid microgrid clusters. A priority-driven optimal power exchange model of ILCs is built considering the priorities and capacities in subgrids. The optimization objective is to minimize the total DC-voltage/AC-frequency state deviations of subgrids. To realize the decentralized power flow control, an optimal-oriented quasi-droop control strategy of ILCs is introduced to not only achieve a flexible self-optimizing power flow management, but also provide an ancillary function of voltage support. Consequently, as each of ILCs only monitors the local AC-side frequency and DC-side voltage signals, the whole optimal power control of the wide-area microgrid clusters is achieved in a decentralized manner without any communication link. Thus, the proposed control algorithm has the features of decreased cost, increased scalability, reduced geographic restrictions and high resilience in terms of communication faults. Finally, the proposed method is validated by case studies with four interconnected microgrids through hardware-in-loop tests

    Whole-system assessment of the benefits of integrated electricity and heat system

    Get PDF
    The interaction between electricity and heat systems will play an important role in facilitating the cost effective transition to a low carbon energy system with high penetration of renewable generation. This paper presents a novel integrated electricity and heat system model in which, for the first time, operation and investment timescales are considered while covering both the local district and national level infrastructures. This model is applied to optimize decarbonization strategies of the UK integrated electricity and heat system, while quantifying the benefits of the interactions across the whole multi-energy system, and revealing the trade-offs between portfolios of (a) low carbon generation technologies (renewable energy, nuclear, CCS) and (b) district heating systems based on heat networks (HN) and distributed heating based on end-use heating technologies. Overall, the proposed modeling demonstrates that the integration of the heat and electricity system (when compared with the decoupled approach) can bring significant benefits by increasing the investment in the heating infrastructure in order to enhance the system flexibility that in turn can deliver larger cost savings in the electricity system, thus meeting the carbon target at a lower whole-system cost

    Seismic retrofit of RC frames through beam-end weakening in conjunction with FRP strengthening

    Get PDF
    The strong column/weak beam requirement is now widely accepted in the design of reinforced concrete (RC) frames to achieve good seismic performance. However, many existing RC frames violate this requirement as they were designed according to inadequate design codes (generally previous codes). In particular, RC frames designed according to the previous Chinese codes for seismic design are likely to violate this requirement as the contribution of a cast-in-place floor slab in tension is not included in assessing the moment capacity of the beam in negative bending. This paper proposes three promising beam weakening techniques in combination with FRP strengthening to achieve this strong column/weak beam hierarchy and presents the preliminary results of an ongoing study into the effectiveness of and design procedures for the proposed techniques

    MagicViewer: integrated solution for next-generation sequencing data visualization and genetic variation detection and annotation

    Get PDF
    New sequencing technologies, such as Roche 454, ABI SOLiD and Illumina, have been increasingly developed at an astounding pace with the advantages of high throughput, reduced time and cost. To satisfy the impending need for deciphering the large-scale data generated from next-generation sequencing, an integrated software MagicViewer is developed to easily visualize short read mapping, identify and annotate genetic variation based on the reference genome. MagicViewer provides a user-friendly environment in which large-scale short reads can be displayed in a zoomable interface under user-defined color scheme through an operating system-independent manner. Meanwhile, it also holds a versatile computational pipeline for genetic variation detection, filtration, annotation and visualization, providing details of search option, functional classification, subset selection, sequence association and primer design. In conclusion, MagicViewer is a sophisticated assembly visualization and genetic variation annotation tool for next-generation sequencing data, which can be widely used in a variety of sequencing-based researches, including genome re-sequencing and transcriptome studies. MagicViewer is freely available at http://bioinformatics.zj.cn/magicviewer/

    Potassium isotopic fractionation during clay adsorption

    Get PDF
    Clay adsorption is a critical process responsible for the mobilization and cycling of potassium (K) on Earth's surface. Recent studies emphasized the potential of using stable K isotopes (δ41K) to understand chemical weathering. However, the direction, degree, and mechanism of K isotopic fractionation linked to clay K uptake during chemical weathering remain poorly constrained. This work investigated the mechanism of K adsorption on clays (kaolinite and smectite) and the isotopic fractionation in three experimental sets with K-containing solutions. The time-series experiments revealed that the adsorption and isotope equilibria were attained after less than 12-hour reaction. Potassium adsorption rate slowed down and its isotopic fractionation approached the steady-state during 15-day reaction. The pH-dependent experiments demonstrated that the percentage of clay K adsorption and the isotopic composition of adsorbed K (and aqueous K) display negative linear correlations. Net isotopic fractionation between adsorbed and aqueous phases (Δ41Kad-aq) remained near-constant (0.6–0.8‰), regardless of variations in pH ranging from 4 to 10. The concentration-control experiments demonstrated that the percentage of K adsorption decreased with increasing KCl concentrations from 0.005 to 20 mM. The δ41K values of aqueous K reached the minimum of −0.53‰ after 92.7% K adsorbed (initial KCl of 0.005 mM). Potassium adsorption was substantially suppressed as ionic strength (fixed by Na+) increased from 0.001 to 0.5 M without apparent Δ41Kad-aq variations. The K K-edge XANES demonstrated that primary K incorporated in clay lattice and surface KCl derived from sorbed K+ and Cl− synchro-dehydration can be identified after drying of clays. These features indicate that adsorbed K+ was bounded onto clays as outer-sphere complexes, which can be replaced with excess Na+ at high ionic strength. Based on experimental results, we cannot distinguish specific mineralogy regulation on K isotopic fractionation. In sum, isotopically heavy K is preferentially sorbed on clay minerals. The results confirm an equilibrium fractionation path independent of reaction time, pH, ionic strength, and initial KCl concentration. Observed K isotopic fractionation is best fitted by an equilibrium isotopic fractionation law with a fractionation factor αad-aq of 1.00075. We highlight the opposite direction of K isotopic fractionation in clay adsorption and structural incorporation during chemical weathering, and their comparative contributions should be considered for future field investigations

    Synthesis of Mesoporous Silica@Co–Al Layered Double Hydroxide Spheres: Layer-by-Layer Method and Their Effects on the Flame Retardancy of Epoxy Resins

    Get PDF
    Hierarchical mesoporous silica@Co–Al layered double hydroxide (m-SiO2@Co–Al LDH) spheres were prepared through a layer-by-layer assembly process, in order to integrate their excellent physical and chemical functionalities. TEM results depicted that, due to the electrostatic potential difference between m-SiO2 and Co–Al LDH, the synthetic m-SiO2@Co–Al LDH hybrids exhibited that m-SiO2 spheres were packaged by the Co–Al LDH nanosheets. Subsequently, the m-SiO2@Co–Al LDH spheres were incorporated into epoxy resin (EP) to prepare specimens for investigation of their flame-retardant performance. Cone results indicated that m-SiO2@Co–Al LDH incorporated obviously improved fire retardant of EP. A plausible mechanism of fire retardant was hypothesized based on the analyses of thermal conductivity, char residues, and pyrolysis fragments. Labyrinth effect of m-SiO2 and formation of graphitized carbon char catalyzed by Co–Al LDH play pivotal roles in the flame retardance enhancement

    Synthesis and characterization of core-shell structure silica-coated Fe29.5Ni70.5 nanoparticles

    Full text link
    In view of potential applications of magnetic particles in biomedicine and electromagnetic devices, we made use of the classical Stober method base-catalysed hydrolysis and condensation of tetraethoxysilane (TEOS) to encapsulate FeNi nanoparticles within a silica shell. An original stirring system under high power ultrasounds made possible to disperse the otherwise agglomerated particles. Sonication guaranteed particles to remain dispersed during the Stober synthesis and also improved the efficiency of the method. The coated particles are characterized by electron microscopy (TEM) and spectroscopy (EDX) showing a core-shell structure with a uniform layer of silica. Silica-coating does not affect the core magnetic properties. Indeed, all samples are ferromagnetic at 77 K and room temperature and the Curie point remains unchanged. Only the coercive force shows an unexpected non-monotonous dependence on silica layer thickness.Comment: Regular paper submited to international peer-reveiwed journa

    The DArk Matter Particle Explorer mission

    Get PDF
    The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to 10\sim 10 TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.Comment: 45 pages, including 29 figures and 6 tables. Published in Astropart. Phy
    corecore