88 research outputs found
The influence of twin boundaries on the Flux Line Lattice structure in YBaCuO: a study by Small Angle Neutron Scattering
The influence of Twin Boundaries (TB) on the Flux Line Lattice(FLL) structure
was investigated by Small Angle Neutron Scattering (SANS). YBaCuO single
crystals possessing different TB densities were studied. The SANS experiments
show that the TB strongly modify the structure of the FLL. The flux lines
meander as soon as the magnetic field makes an angle with the TB direction.
According to the value of this angle but also to the ratio of the flux lines
density over the TB density, one observes that the FLL exhibits two different
unit cells in the plane perpendicular to the magnetic field. One is the
classical hexagonal and anisotropic cell while the other is affected by an
additional deformation induced by the TB. We discuss a possible relation
between this deformation and the increase of the critical current usually
observed in heavily twinned samples.Comment: accepted for publication in Phys Rev
Magnetic order in the pseudogap phase of high- superconductors
One of the leading issues in high- superconductors is the origin of the
pseudogap phase in underdoped cuprates. Using polarized elastic neutron
diffraction, we identify a novel magnetic order in the YBaCuO
system. The observed magnetic order preserves translational symmetry as
proposed for orbital moments in the circulating current theory of the pseudogap
state. To date, it is the first direct evidence of an hidden order parameter
characterizing the pseudogap phase in high- cuprates.Comment: 3 figure
Pulsed-field magnetization of drilled bulk high-temperature superconductors: flux front propagation in the volume and on the surface
We present a method for characterizing the propagation of the magnetic flux
in an artificially drilled bulk high-temperature superconductor (HTS) during a
pulsed-field magnetization. As the magnetic pulse penetrates the cylindrical
sample, the magnetic flux density is measured simultaneously in 16 holes by
means of microcoils that are placed across the median plane, i.e. at an equal
distance from the top and bottom surfaces, and close to the surface of the
sample. We discuss the time evolution of the magnetic flux density in the holes
during a pulse and measure the time taken by the external magnetic flux to
reach each hole. Our data show that the flux front moves faster in the median
plane than on the surface when penetrating the sample edge; it then proceeds
faster along the surface than in the bulk as it penetrates the sample further.
Once the pulse is over, the trapped flux density inside the central hole is
found to be about twice as large in the median plane than on the surface. This
ratio is confirmed by modelling
Bulk high-Tc superconductors with drilled holes: how to arrange the holes to maximize the trapped magnetic flux ?
Drilling holes in a bulk high-Tc superconductor enhances the oxygen annealing
and the heat exchange with the cooling liquid. However, drilling holes also
reduces the amount of magnetic flux that can be trapped in the sample. In this
paper, we use the Bean model to study the magnetization and the current line
distribution in drilled samples, as a function of the hole positions. A single
hole perturbs the critical current flow over an extended region that is bounded
by a discontinuity line, where the direction of the current density changes
abruptly. We demonstrate that the trapped magnetic flux is maximized if the
center of each hole is positioned on one of the discontinuity lines produced by
the neighbouring holes. For a cylindrical sample, we construct a polar
triangular hole pattern that exploits this principle; in such a lattice, the
trapped field is ~20% higher than in a squared lattice, for which the holes do
not lie on discontinuity lines. This result indicates that one can
simultaneously enhance the oxygen annealing, the heat transfer, and maximize
the trapped field
Antiferromagnetic ordering in a 90 K copper oxide superconductor
Using elastic neutron scattering, we evidence a commensurate
antiferromagnetic Cu(2) order (AF) in the superconducting (SC) high-
cuprate (y=0.013, =93 K). As
in the Co-free system, the spin excitation spectrum is dominated by a magnetic
resonance peak at 41 meV but with a reduced spectral weight. The substitution
of Co thus leads to a state where AF and SC cohabit showing that the CuO
plane is a highly antiferromagnetically polarizable medium even for a sample
where T remains optimum.Comment: 3 figure
Pinning and trapped field in MgB2- and MT-YBaCuO bulk superconductors manufactured under pressure
The relevant pinning centers of Abrikosov vortices in MgB–based materials are oxygen-enriched Mg-B-O inclusions or nanolayers and inclusions of MgB (x>4) phases. The high critical current densities, j, of 10 and 10A/cm at 1 and 8.5 T, respectively, at 20 K can be achieved in polycrystalline materials (prepared at 2 GPa) containing a large amount of admixed oxygen. Besides, oxygen can be incorporated into the MgB structure in small amounts (MgBO), which is supported by Auger studies and calculations of the DOS and the binding energy. The j of melt textured YBaCuO (or Y123)-based superconductors (MT-YBaCuO) depends not only on the perfectness of texture and the amount of oxygen in the Y123 structure, but also on the density of twins and micro-cracks formed during the oxygenation (due to shrinking of the c-lattice parameter). The density of twins and microcracks increases with the reduction of the distance between YBaCuO (Y211) inclusions in Y123. At 77 K j=8⋅10 A/cm in self-field and j=10 A/cm at 10 Т were found in materials oxygenated at 16 MPa for 3 days with a density of twins of 22–35 per μm (thickness of the lamellae: 45-30 nm) and a density of micro-cracks of 200–280 per mm. Pinning can occur at the points of intersection between the Y123 twin planes and the Y211 inclusions. MTYBaCuO at 77 K can trap 1.4 T (38×38×17 mm, oxygenated at 0.1 MPa for 20 days) and 0.8 T (16 mm in diameter and 10 mm thick with 0.45 mm holes oxygenated at 10 MPa for 53 h). The sensitivity of MgB to magnetic field variations (flux jumps) complicates estimates of the trapped field. At 20 K 1.8 T was found for a block of 30 mm in diameter and a thickness of 7.5 mm and 1.5 T (if the magnetic field was increased at a rate of 0.1 T) for a ring with dimensions 24×18 mm and a thickness of 8 mm
Superconductivity in multi-phase Mg-B-O compounds
Structures of MgB2-based materials manufactured under pressure (up to 2 GPa) by different methods having high superconducting performance and connectivity are multiphase and contain different Mg-B-O compounds. Some oxygen can be incorporated into MgB2 and boron into MgO structures, MgBx (X=4-20) inclusions contain practically no oxygen. Regulating manufacturing temperature, pressure, introducing additions one can influence oxygen and boron distribution in the materials and thus, affect the formation, amount and sizes of Mg-B-O and MgBx inclusions and changing type of pinning, pinning force and so affect critical current density jc. The boron concentration increase in initial Mg and B mixture allows obtaining sample containing 88.5 wt% of MgB12 with Tc of 37.4 K (estimated magnetically)
A Work Proposal for a Collaborative Study of Magnet Technology for a Future Muon Collider
In this paper we elaborate on the nature and challenges for the magnet
systems of a muon collider as presently considered within the scope of the
International Muon Collider Collaboration (IMCC). We outline the structure of
the work proposed over the coming period of five years to study and demonstrate
relevant magnet technology. The proposal, which is part of the overall work
planned to establish feasibility of a muon collider, is in direct response to
the recent recommendations received from the Laboratories Directors Group
(LDG). The plan is to profit from joint activities, within the scope of the
IMCC and beyond, implemented through direct and EU-funded contributions.Comment: contribution to Snowmass 202
- …