26 research outputs found
A neighbourhood Output Area Classification from the 2021 and 2022 UK censuses
UK-wide multivariate neighbourhood classifications have been built using small area population data following every census since 1971, and have been built using Output Area geographies since 2001. Policy makers in both the public and private sectors find such taxonomies, typically arranged into hierarchies of Supergroups, Groups and Subgroups, useful across a wide range of applications in business and service planning. Recent and forthcoming releases of small area census statistics pose new methodological challenges. For example, the 2022 Scottish Census was carried out a year after those in other UK nations, and some of the variables now collected across different jurisdictions do not bear direct comparison with one another. Here we develop a methodology to accommodate these issues alongside the more established procedures of variable selection, standardisation, transformation, class definition and labelling
Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS-2
Oral estrogen administration attenuates the metabolic action of growth hormone (GH) in humans. To investigate the mechanism involved, we studied the effects of estrogen on GH signaling through Janus kinase (JAK)2 and the signal transducers and activators of transcription (STATs) in HEK293 cells stably expressing the GH receptor (293GHR), HuH7 (hepatoma) and T-47D (breast cancer) cells. 293GHR cells were transiently transfected with an estrogen receptor-α expression plasmid and luciferase reporters with binding elements for STAT3 and STAT5 or the β-casein promoter. GH stimulated the reporter activities by four- to sixfold. Cotreatment with 17β-estradiol (E2) resulted in a dose-dependent reduction in the response of all three reporters to GH to a maximum of 49-66% of control at 100 nM (P < 0.05). No reduction was seen when E2 was added 1-2 h after GH treatment. Similar inhibitory effects were observed in HuH7 and T-47D cells. E2 suppressed GH-induced JAK2 phosphorylation, an effect attenuated by actinomycin D, suggesting a requirement for gene expression. Next, we investigated the role of the suppressors of cytokine signaling (SOCS) in E2 inhibition. E2 increased the mRNA abundance of SOCS-2 but not SOCS-1 and SOCS-3 in HEK293 cells. The inhibitory effect of E2 was absent in cells lacking SOCS-2 but not in those lacking SOCS-1 and SOCS-3. In conclusion, estrogen inhibits GH signaling, an action mediated by SOCS-2. This paper provides evidence for regulatory interaction between a sex steroid and the GH/JAK/STAT pathway, in which SOCS-2 plays a central mechanistic role
CCAAT/enhancer binding proteins in normal mammary development and breast cancer
CCAAT/enhancer binding proteins (C/EBPs) are a family of leucine zipper, transcription factors that bind to DNA as homodimers and heterodimers. They regulate cellular proliferation, differentiation and apoptosis in the mammary gland. Multiple protein isoforms, including truncated, dominant negatives, are generated by translation of the C/EBPβ transcript or via proteolytic cleavage of the full-length C/EBPβ protein. Gene deletion of individual C/EBP family members has demonstrated an essential role for C/EBPβ in normal mammary development, while transgenic and overexpression studies provide evidence that the dominant-negative C/EBPβ-liver-enriched inhibitory protein isoform induces proliferation in mammary epithelial cells. Mounting evidence suggests that alterations in the ratio of the C/EBPβ-liver-enriched inhibitory protein isoform and the C/EBPβ-liver-enriched activating protein isoform may play a role in the development of breast cancer. This review will consequently focus on C/EBP actions in normal mammary development and on the emerging data that supports a role in breast cancer
Transcriptional Regulation of Human Dual Specificity Protein Phosphatase 1 (DUSP1) Gene by Glucocorticoids
Background: Glucocorticoids are potent anti-inflammatory agents commonly used to treat inflammatory diseases. They convey signals through the intracellular glucocorticoid receptor (GR), which upon binding to ligands, associates with genomic glucocorticoid response elements (GREs) to regulate transcription of associated genes. One mechanism by which glucocorticoids inhibit inflammation is through induction of the dual specificity phosphatase-1 (DUSP1, a.k.a. mitogen-activated protein kinase phosphatase-1, MKP-1) gene. Methodology/Principal Findings: We found that glucocorticoids rapidly increased transcription of DUSP1 within 10 minutes in A549 human lung adenocarcinoma cells. Using chromatin immunoprecipitation (ChIP) scanning, we located a GR binding region between 21421 and 21118 upstream of the DUSP1 transcription start site. This region is active in a reporter system, and mutagenesis analyses identified a functional GRE located between 21337 and 21323. We found that glucocorticoids increased DNase I hypersensitivity, reduced nucleosome density, and increased histone H3 and H4 acetylation within genomic regions surrounding the GRE. ChIP experiments showed that p300 was recruited to the DUSP1 GRE, and RNA interference experiments demonstrated that reduction of p300 decreased glucocorticoid-stimulated DUSP1 gene expression and histone H3 hyperacetylation. Furthermore, overexpression of p300 potentiated glucocorticoid-stimulated activity of a reporter gene containing the DUSP1 GRE, and this coactivation effect was compromised when the histone acetyltransferase domain was mutated. ChIP-reChIP experiments using GR followed by p300 antibodies showed significant enrichment of the DUSP1 GRE upon glucocorticoid treatment, suggesting that GR and p300 are in the same protein complex recruited to the DUSP1 GRE. Conclusions/Significance: Our studies identified a functional GRE for the DUSP1 gene. Moreover, the transcriptional activation of DUSP1 by glucocorticoids requires p300 and a rapid modification of the chromatin structure surrounding the GRE. Overall, understanding the mechanism of glucocorticoid-induced DUSP1 gene transcription could provide insights into therapeutic approaches against inflammatory diseases. © 2010 Shipp et al
Differential Interactions of Specific Nuclear Factor I Isoforms with the Glucocorticoid Receptor and STAT5 in the Cooperative Regulation of WAP Gene Transcription
The distal region (−830 to −720 bp) of the rat whey acidic protein (WAP) gene contains a composite response element (CoRE), which has been demonstrated previously to confer mammary gland-specific and hormonally regulated WAP gene expression. Point mutations in the binding sites for specific transcription factors present within this CoRE have demonstrated the importance of both nuclear factor I (NFI) and STAT5 as well as cooperative interactions with the glucocorticoid receptor (GR) in the regulation of WAP gene expression in the mammary gland of transgenic mice. This study reports the characterization of NFI gene expression during mammary gland development and the identification and cloning of specific NFI isoforms (NFI-A4, NFI-B2, and NFI-X1) from the mouse mammary gland during lactation. Some but not all of these NFI isoforms synergistically activate WAP gene transcription in cooperation with GR and STAT5, as determined using transient cotransfection assays in JEG-3 cells. On both the WAP CoRE and the mouse mammary tumor virus long terminal repeat promoter, the NFI-B isoform preferentially activated gene transcription in cooperation with STAT5A and GR. In contrast, the NFI-A isoform suppressed GR and STAT cooperativity at the WAP CoRE. Finally, unlike their interaction with the NFI consensus binding site in the adenovirus promoter, the DNA-binding specificities of the three NFI isoforms to the palindromic NFI site in the WAP CoRE were not identical, which may partially explain the failure of the NFI-A isoform to cooperate with GR and STAT5A
Expression Level-Dependent Contribution of Glucocorticoid Receptor Domains for Functional Interaction with STAT5
The action of the glucocorticoid receptor (GR) on β-casein gene transcription serves as a well-studied example of a case where the action of the GR is dependent on the activity of another transcription factor, STAT5. We have investigated the domain-requirement of the GR for this synergistic response in transfection experiments employing GR mutants and CV-1 or COS-7 cells. The results were influenced by the expression levels of the GR constructs. At low expression, STAT5-dependent transactivation by mutants of the GR DNA binding domain or N-terminal transactivation domain was impaired and the antiglucocorticoid RU486 exhibited a weak agonistic activity. When the N-terminal region of the GR was exchanged with the respective domain of the progesterone receptor, STAT5-dependent transactivation was reduced at low and high expression levels. Only at high expression levels did the GR exhibit the properties of a coactivator and enhanced STAT5 activity in the absence of a functional DNA binding domain and of GR binding sites in the proximal region of the β-casein gene promoter. Furthermore, at high GR expression levels RU486 was nearly as efficient as dexamethasone in activating transcription via the STAT5 dependent β-casein gene promoter. The results reconcile the controversial issue regarding the DNA binding-independent action of the GR together with STAT5 and provide evidence that the mode of action of the GR depends not only on the type of the particular promoter at which it acts but also on the concentration of the GR. GR DNA binding function appears to be mandatory for β-casein gene expression in mammary epithelial cells, since the promoter function is completely dependent on the integrity of GR binding sites in the promoter
The Modulation of STAT5A/GR Complexes during Fat Cell Differentiation and in Mature Adipocytes*
Objective: Signal transducer and activator of transcription (STAT) 5A has been shown to interact with the glucocorticoid receptor (GR) in adipocytes. The aim of this study was to investigate the subcellular locations and modulation of STAT5A/GR complexes during adipogenesis and in mature adipocytes. Research Methods and Procedures: Both 3T3-L1 and 3T3-F442A cells were studied by performing subcellular fractionations, immunoprecipitation, and Western blotting after various treatments. Results: The formation of nuclear STAT5A/GR complexes was regulated in the cytosol and in the nucleus at distinct times during adipogenesis and in mature adipocytes. STAT5A, but not STAT5B, forms a complex with GR in adipocytes. The STAT5A associated with GR in the nucleus is tyrosine phosphorylated. Discussion: The association of STAT5A with GR in the nucleus of adipocytes is modulated by the tyrosine phosphorylation of STAT5A. Both GR and STAT5A are known to have important roles in adipocyte function. Hence, our data suggest that the association of these two transcription factors may be important in the regulation of adipocyte gene expression. Copyright © 2007 NAASO